Issue
Korean Chemical Engineering Research,
Vol.52, No.1, 75-80, 2014
Effects of Solutally Dominant Convection on Physical Vapor Transport for a Mixture of Hg2Br2 and Br2 under Microgravity Environments
The convective flow structures in the vapor phase on earth are shown to be single unicellular, indicating the solutally dominant convection is important. These findings reflect that the total molar fluxes show asymmetrical patterns in a viewpoint of interfacial distributions. With decreasing the gravitational level form 1 g0 down to 1.0 × 10^(-4) g0, the total molar fluxes decay first order exponentially. It is also found that the total molar fluxes decay first order exponentially with increasing the partial pressure of component B, PB (Torr) form 5 Torr up to 400 Torr. Under microgravity environments less than 1 g0, a diffusive-convection mode is dominant and, results in much uniformity in front of the crystal regions in comparisons with a normal gravity acceleration of 1 g0.
[References]
  1. Choubey A, Veeramani P, Pym ATG, Mullins JT, Sellin PJ, Brinkman AW, Radley I, Basu A, Tanner BK, J. Cryst. Growth, 352(1), 120, 2012
  2. Shi YG, Yang JF, Liu HL, Dai PY, Liu BB, Jin ZH, Qiao GJ, Li HL, J. Cryst. Growth, 349(1), 68, 2012
  3. Zotov N, Baumann S, Meulenberg WA, Vaßen R, J. Membr. Sci., 442, 119, 2013
  4. Fanton MA, Li Q, Polyakov AY, Skowronski M, Cavalero R, Ray R, J. Cryst. Growth, 287(2), 339, 2006
  5. Su CH, George MA, Palosz W, Feth S, Lehoczky SL, J. Cryst. Growth, 213(3-4), 267, 2000
  6. Paorici C, Razzetti C, Zha M, Zanotti L, Carotenuto L, Ceglia M, Mater. Chem. Phys., 66(2-3), 132, 2000
  7. Lee YK, Kim GT, J. Korean Crystal Growth and Crystal Tech., 23, 20, 2013
  8. Greenwell DW, Markham BL, Rosenberger F, J. Cryst. Growth, 51, 413, 1981
  9. Markham BL, Greenwell DW, Rosenberger F, J. Cryst. Growth, 51, 426, 1981
  10. Jhaveri BS, Rosenberger F, J. Cryst. Growth, 57, 57, 1982
  11. Markham BL, Rosenberger F, J. Cryst. Growth, 67, 241, 1984
  12. Nadarajah A, Rosenberger F, Alexander J, J. Cryst. Growth, 118, 49, 1992
  13. Zhou H, Zebib A, Trivedi S, Duval WMB, J. Cryst. Growth, 167, 534, 1996
  14. Duval WMB, J. Mater. Proc. Manufacturing Sci., 1, 83, 1992
  15. Duval WMB, J. Mater. Proc. Sci., 1, 295, 1993
  16. Duval WMB, Glicksman NE, Singh B, J. Cryst. Growth, 174, 120, 1997
  17. Tebbe PA, Loyalka SK, Duval WMB, Finite Elements in Analysis and Design, 40, 1499, 2004
  18. Kim GT, Duval WMB, Singh NB, Glickman ME, Model. Simul. Mater. Sci. Eng., 3, 331, 1995
  19. Kim GT, Duval WMB, Glickman ME, Model. Simul. Mater. Sci. Eng., 5, 289, 1997
  20. Kim GT, Duval WMB, Glicksman ME, Chem. Eng. Commun., 162, 45, 1997
  21. Rosenberger F, Muller G, J. Cryst. Growth, 65, 91, 1983