Issue
Korean Chemical Engineering Research,
Vol.52, No.1, 68-74, 2014
압력지연삼투(PRO) 발전 시스템에서 채널 입구 압력차의 영향에 대한 수치해석적 연구
Numerical Studies on the Effects of the Channel-Inlet-Pressure Difference in the Pressure-Retarded Osmosis (PRO) Power System
해수-담수 염도 차 발전을 위한 압력지연삼투(pressure-retarded osmosis: PRO) 시스템의 나권형(spiral wound) 모듈에서 공급채널과 유도채널 사이의 입구 압력차의 영향이 수치적으로 연구되었다. 그리하여 막을 통한 물과 용질-플럭스들의 변화와 전력이 예측되었다. 막을 통한 물-플럭스의 크기는 두 채널 간 입구 압력차가 증가할수록 x축 방향으로 감소하고 y축 방향으로 증가하였다. 반면에 막을 통한 용질-플럭스의 크기는 반대의 경향을 보였다. 공급채널 내 유체의 농도는 y축 방향으로 크게 증가하였고, 유도채널 내 농도는 x축 방향으로 크게 감소하였다. 본 시스템에서 입구 압력차가 1~11 atm일 때 공급채널 내 유량은 8~13% 가량 감소하였고, 유도채널 내 유량은 그만큼 증가하였다. 전력밀도는 입구 압력 차가 증가할수록 증가하다가 감소하였다.
In the spiral wound module of the pressure-retarded osmosis (PRO) system for the salinity gradient power generation, effects of the inlet pressure differences between feed-channel and draw-channel were studied. Fluxes of water and solute through membrane and power were estimated. The water flux through membrane decreased along the x-direction and increased along the y-direction with the increase of inlet pressure differences between two channels. On the other hand, the solute flux through membrane showed the opposite trend. The concentration of flow in the feed-channel increased a lot along the y-direction and that in the draw-channel decreased along the x-direction. In our system, for the inlet pressure differences of 1~11 atm, the flow rate in the feed-channel decreased about 8~13% and that in the drawchannel increased by the same amount. The power density increased and then decreased with the increasing inlet pressure difference.
[References]
  1. Kim KS, Ryoo W, Chun MS, Chung GY, Lee SO, Korean J. Chem. Eng., 29(2), 162, 2012
  2. Gerstandt K, Peinemann KV, Skilhagen SE, Thorsen T, Holt T, Desalination, 224(1-3), 64, 2008
  3. Pattle RE, Nature, 174, 660, 1954
  4. Loeb S, Norman RS, Science, 189, 654, 1975
  5. Kim S, Hoek EMV, Desalination, 186(1-3), 111, 2005
  6. Yip NY, Tiraferri A, Phillip WA, Schiffman JD, Hoover LA, Kim YC, Elimelech M, Environ. Sci. Technol., 45, 4360, 2011
  7. Hwang ST, Korean J. Chem. Eng., 28(1), 1, 2011
  8. Sundaramoorthy S, Srinivasan G, Murthy DVR, Desalination, 280(1-3), 403, 2011
  9. Achilli A, Cath TY, Childress AE, J. Membr. Sci., 343(1-2), 42, 2009
  10. Sundaramoorthy S, Srinivasan G, Murthy DVR, Desalination, 277(1-3), 257, 2011
  11. Yip NY, Elimelech M, Environ. Sci. Technol., 46, 5230, 2011
  12. Hong, S. S., Ryoo, W., Chun, M.-S., Lee, S. O. and Chung, G.Y., “Numerical Studies on the Pressure-retarded Osmosis (PRO) System with the Spiral Wound Module for Power Generation,” Desalination Water Treat (2013) online.
  13. Yip NY, Elimelech M, Environ. Sci. Technol., 45, 10273, 2011
  14. Tiraferri A, Yip NY, Phillip WA, Schiffman JD, Elimelech M, J. Membr. Sci., 367(1-2), 340, 2011