Issue
Korean Chemical Engineering Research,
Vol.52, No.1, 58-62, 2014
Pt/GDC/Pt 셀을 이용한 물과 질소로부터 전기화학적 암모니아 합성
Electrochemical Synthesis of Ammonia from Water and Nitrogen using a Pt/GDC/Pt Cell
본 연구에서는 Pt/GDC/Pt 셀을 이용하여 상압에서 물과 질소로부터 전기화학적으로 암모니아를 합성하는 연구를 수행하였다. 수분이 포화된 질소분위기에서 작동온도(400~600 ℃)와 전압(OCV(Open Circuit Voltage)~1.2 V)에 대한 전기화학적 특성 평가를 수행하였고, 암모니아 합성량을 정량 분석하였다. 정전압 하에서 작동온도의 증가에 따라 인가 전류의 증가로 암모니아 합성량은 증가하였으나, Pt 전극에서 암모니아 합성에 필요한 질소의 화학적 해리 흡착 반응의 한계로 패러데이 효율(faradaic efficiency)은 감소하였다. 600 ℃에서 최대 암모니아 합성량인 3.67×10^(-11) mols^(-1)cm^(-2) (6.7 mA) 얻었고 패러데이 효율은 0.1%이다.
Electrochemical ammonia synthesis from water and nitrogen using a Pt/GDC/Pt cell was experimentally investigated. Electrochemical analysis and ammonia synthesis in the moisture-saturated nitrogen environment were performed under the operating temperature range 400~600 ℃ and the applied potential range OCV (Open Circuit Voltage)-1.2V. Even though the ammonia synthesis rate was augmented with the increase in the operating temperature (i.e. increase in the applied current) under the constant potential, the faradaic efficiency was decreased because of the limitation of dissociative chemisorption of nitrogen on the Pt electrode. The maximum synthesis rate of ammonia was 3.67×10^(-11) mols^(-1)cm^(-2) with 0.1% faradaic efficiency at 600 ℃.
[References]
  1. Amar IA, Lan R, Petit CTG, Tao S, J. Solid State Electrochem., 15, 1845, 2011
  2. Lan R, Irvine TS, Tao S, Int. J. Hydrog. Energy, 37, 1482, 2008
  3. Klerke A, Christensen CH, Norskov JK, Vegge T, J. Mater Chem, 18, 2304, 2008
  4. Sifer N, Gardner K, J. Power Sources, 8, 132, 2004
  5. MacKenzie JJ, Avery WH, IECEC 96, 3, 1761, 1996
  6. Zamfirescu C, Dincer I, J. Power Sources, 65, 185, 2008
  7. Schlogl R, Angew. Chem.-Int. Edit., 8, 42, 2003
  8. Charles N, AIChE J., 27, 174, 1981
  9. Rafiqul I, Weber C, Lehmann B, Voss A, Energy, 30(13), 2487, 2005
  10. Farla JCM, Hendriks CA, Blok K, AJCC, 29, 439, 1995
  11. Li Z, Liu R, Xie Y, Feng S, Wang J, Solid State Ion., 176, 1063, 2005
  12. Marnellos G, J. Catal., 193, 80, 2000
  13. Wang JD, Xie YH, Zhang ZF, Liu RQ, Li ZH, Mater. Res. Bull., 40(8), 1294, 2005
  14. Skodra A, Stoukides M, Solid State Ion., 180(23-25), 1332, 2009
  15. Kordali V, Kyriacou G, Lambrou C, “Electrochemical Synthesis of Ammonia at Atmospheric Pressure and Low Temperature in a Solid Polymer Electrolyte Cell,” Chem. Commun., 1673-1674, 2000
  16. Kreuer KD, Solid State Ion., 97(1-4), 1, 1997
  17. Kim JH, Park YM, Kim T, Kim H, Korean J. Chem. Eng., 29(3), 349, 2012
  18. Kim DG, Song M, Lee KS, Kim YS, Kim YS, Shin HS, Korean Chem. Eng. Res., 49(6), 781, 2011
  19. Ivancic I, Water Res., 18, 1143, 1984
  20. Amar IA, Petit CTG, Zhang L, Lan R, Skabara PJ, Tao S, Solid State Ion., 201(1), 94, 2011
  21. Aika KI, Ozaki A, J. Catal., 14, 311, 1969
  22. Honkala K, Hellman A, Remediakis IN, Logadottir A, Carlsson A, Dahl S, Christensen CH, Norskov JK, AAAS, 307, 555, 2005
  23. Ouzounidou M, Skodra A, Kokkofitis C, Stoukides M, Solid State Ion., 178, 153, 2007