Issue
Korean Chemical Engineering Research,
Vol.51, No.5, 622-627, 2013
광산란법에서 실리카 졸의 농도 및 표면특성이 입자 크기 및 전기영동 이동도 측정결과에 미치는 영향
Effect of Concentration and Surface Property of Silica Sol on the Determination of Particle Size and Electrophoretic Mobility by Light Scattering Method
콜로이달 실리카는 실리콘과 사파이어 웨이퍼의 정밀연마슬러리, 유-무기 하이브리드 코팅제, 정밀주조의 바인더 등 다양한 제품으로 사용되는 물질이다. 이러한 실리카 졸의 입자크기 및 분산 안정성은 웨이퍼의 표면, 코팅 막 혹은 벌크의 기계적, 화학적, 광학적 특성에 영향을 주기 때문에 정확한 측정값이 요구된다. 본 연구에서는 제조사에서 제시한 입자 크기 및 표면 특성이 다른 8종류 실리카 졸의 부피 분율에 따라 입자 크기, 졸 점도 및 입자 전기영동이동도의 측정결과에 미치는 영향을 논의하였다. 높은 표면활성을 지닌 실리카 입자의 특성 및 실리카 졸의 희석에 의한 안정화 이온 농도의 변화로 인해 실리카의 측정 입자 크기와 이동도는 졸의 부피 분율 혹은 입자 크기에 따라 변한다. 60 nm 보다 작은 입자는 부피 분율이 증가함에 따라 측정된 입자 크기가 증가한 반면에, 그 보다 큰 입자에서는 측정된 입자 크기가 감소하였다. 12 nm와 같이 작은 입자는 부피 분율이 증가함에 따라 점도가 상승하면서 측정 입자의 이동도가 감소한 반면에 100 nm의 큰 입자는 0.048의 낮은 부피 분율까지 이동도가 증가하다가 그보다 높은 부피 분율부터 감소하였다.
Colloidal silica is used in various industrial products such as chemical mechanical polishing slurry for planarization of silicon and sapphire wafer, organic-inorganic hybrid coatings, binder of investment casting, etc. An accurate determination of particle size and dispersion stability of silica sol is demanded because it has a strong influence on surface of wafer, film of coatings or bulks having mechanical, chemical and optical properties. The study herein is discussed on the effect of measurement results of average particle size, sol viscosity and electrophoretic mobility of particle according to the volume fraction of eight types of silica sol with different size and surface properties of silica particles which are presented by the manufacturer. The measured particle size and the mobility of these sol were changed by volume fraction or particle size due to highly active surface of silica particle and change of concentration of counter ion by dilution of silica sol. While in case the measured sizes of small particles less than 60 nm are increased with increasing volume fraction, the measured sizes of larger particles than 60 nm are slightly decreased. The mobility of small particle such as 12 nm are decreased with increase of viscosity. However, the mobility of 100 nm particles under 0.048 volume fraction are increased with increasing volume fraction and then decreased over higher volume fraction.
[References]
  1. Changjin C, “China Silicon Industry,” CRCSI, China, 3(6), 14, 2010
  2. Cintre M, Cambon S, Leclerc D, Dodds J, Anal. Chem., 58, 86, 1986
  3. Xu R, Particuology., 6, 112, 2008
  4. Jaeger N, Demeyere H, Finsy R, Sneyers R, Vanderdeelen J, Meeren P, Laethem M, Part. Part. Syst. Charact., 8, 179, 1991
  5. Tantra R, Schulze P, Quincey P, Particuology., 8, 279, 2010
  6. Adamczyk Z, Jachimska B, Kolasinska M, J. Colloid Interface Sci., 273(2), 668, 2004
  7. Viota JL, Rasa M, Sacanna S, Philipse AP, J. Colloid Interface Sci., 290(2), 419, 2005
  8. ISO Reference, “Particle Size Analysis-Photon Corelation Spectroscopy," ISO 13321, 1996
  9. DLS technical note MRK656-01, Malvern Instruments Ltd.
  10. Paik U, Kim JY, Hackley VA, Mater. Chem. Phys., 91(1), 205, 2005
  11. Quemada D, Berli C, Adv. Colloid Interface Sci., 98, 51, 2002
  12. O'Brien RW, White LR, J. Chem. Soc. Farad. Trans. II., 74, 1607, 1978
  13. Mondragon R, Julia JE, Barba A, Jarque JC, Chem.Eng. Sci., 80, 119, 2012
  14. Lobaskin V, Dunweg B, Medebach M, Palberg T, Holm C, Phys. Rev. Lett., 176105-1, 98, 2007
  15. Barnes HA, Hutton JF, Walters K, Rheology Series., Elsevier, 3, 120, 1989