Issue
Korean Chemical Engineering Research,
Vol.51, No.5, 615-621, 2013
비수계 바나듐 레독스 흐름 전지를 위한 상용 멤브레인의 특성분석
Characterization of Commercial Membranes for Non-aqueous Vanadium Redox Flow Battery
본 연구에서는 수계 레독스 흐름전지에서 사용하는 멤브레인 특성분석방법을 개선하여 비수계 레독스 흐름 전지를 위한 멤브레인 특성분석방법을 확립하였다. 비수계 레독스 흐름 전지에 적합한 멤브레인 특성을 확인하기 위해 상용 멤브레인의 이온교환능력, 이동수, 이온 전도도, 활물질 투과도, 전지효율 실험 등 특성분석들을 수행하였다. 상용 음이온 교환 멤브레인의 특성분석 실험을 통해 충·방전 효율 및 에너지효율과 이온 선택성의 상관관계를 조사하였다. Neosepta AHA 음이온 교환 멤브레인은 이동수 측정에서 0.81의 값으로 비수계 전해질에서 비교적 낮은 이온 선택성을 보였지만, 충방전 전지효율 평가에서는 92%의 충·방전효율과 86%의 에너지효율을 각각 나타내었다. 또한 이온의 선택성이 없는 다공성 멤브레인은 높은 전류밀도의 비수계 레독스 흐름 전지에 적절함을 알 수 있었다.
Membrane characterization methods for aqueous redox flow batteries aqueous RFBs were modified for non-aqueous RFBs. The modified characterization methods, such as ion exchange capacity, transport number, permeability and single cell test, were carried out to evaluate commercial membranes in non-aqueous electrolyte. It was found that columbic efficiency and energy efficiency in a single cell test were dependent on the ion selectivity of commercial anion exchange membranes. Neosepta AHA anion exchange membrane showed the anion transport number of 0.81, which is a relatively low ion selectivity in non-aqueous electrolyte, however, exhibited 92% of coulombic efficiency and 86% of energy efficiency in a single cell test. It was also found that a porous membrane without ion selectivity is suitable for a non-aqueous redox flow battery at a high current density.
[References]
  1. Kwak NS, Sim JB, Hwang TS, Macromol. Res., 21(9), 941, 2013
  2. Sum E, Skylass-Kazacos M, J. Power Sources., 15(2-3), 179, 1985
  3. Sum E, Rychcik M, Skylass-Kazacos M, J. Power Sources., 16(2), 85, 1985
  4. Mohammadi T, Skylass-Kazacos M, J. Power Sources., 63(2), 179, 1996
  5. Yang CY, J. Appl. Electrochem., 12(4), 425, 1982
  6. Codina G, Perez JR, Lopez-Atalaya M, Vazquez JL, Aldaz A, J. Power Sources., 48(3), 293, 1994
  7. Bartolozzi M, J. Power Sources., 27(3), 219, 1989
  8. Lopez-Atalaya M, Codina G, Perez JR, Vazquez JL, Aldaz A, J. Power Sources., 39(2), 147, 1992
  9. Codina G, Aldaz A, J. Appl. Electrochem., 22(7), 668, 1992
  10. Savinell RF, Liu CC, Galasco RT, Chiang SH, J. Electrochem. Soc., 126(3), 357, 1979
  11. Zhao P, Zhang HM, Zhou HT, Yi BL, Electrochim. Acta, 51(6), 1091, 2005
  12. Lim HS, Lackner AM, Knechtli RC, J. Electrochem. Soc., 124(8), 1154, 1977
  13. Liu Q, Sleightholme AES, Shinkle AA, Li Y, Thompson LT, Electrochem. Commun., 11(12), 2312, 2009
  14. Matsuda Y, Tanaka K, Okada M, Takasu Y, Morita M, J. Appl. Electrochem., 18(6), 909, 1988
  15. Gupta KC, Abdulkadir HK, Chand S, J. Appl. Polym. Sci., 90(5), 1398, 2003
  16. Chakrabarti MH, Dryfe RAW, Roberts EPL, Electrochim. Acta, 52(5), 2189, 2007
  17. Yamamura T, Shiokawa Y, Yamana H, Moriyama H, Electrochim. Acta, 48(1), 43, 2002
  18. Liu Q, Shinkle AA, Li Y, Monroe CW, Thompson LT, Sleightholme AES, Electrochem. Commun., 12(11), 1634, 2010
  19. Mun J, Lee MJ, Park JW, Oh DJ, Lee DY, Doo SG, Electrochem. Solid State Lett., 15(6), A80, 2012
  20. Sleightholme AES, Shinkle AA, Liu QH, Li YD, Monroe CW, Thompson LT, J. Power Sources, 196(13), 5742, 2011
  21. Zhang D, Lan H, Li Y, J. Power Sources., 217(1), 199, 2012
  22. Shin SH, Yun SH, Moon SH, RSC Advances., 3(24), 9095, 2013
  23. Zhang B, Zhang S, Xing D, Han R, Yin C, Jian X, J. Power Sources., 217(1), 296, 2012
  24. Seo SJ, Kim BC, Sung KW, Shim J, Jeon JD, Shin KH, Shin SH, Yun SH, Lee JY, Moon SH, J. Membr. Sci., 428(1), 17, 2013
  25. Qiu JY, Zhang JZ, Chen JH, Peng J, Xu L, Zhai ML, Li JQ, Wei GS, J. Membr. Sci., 334(1-2), 9, 2009
  26. Fang J, Xu H, Wei X, Guo M, Lu X, Lan C, Zhang Y, Liu Y, Peng T, Polym. Adv.Technol., 24(2), 168, 2013
  27. Teng XG, Zhao YT, Xi JY, Wu ZH, Qiu XP, Chen LQ, J. Membr. Sci., 341(1-2), 149, 2009
  28. Wang N, Yu J, Zhou Z, Fang D, Liu S, Liu Y, J. Membr. Sci., 437(1), 114, 2013