Issue
Korean Chemical Engineering Research,
Vol.51, No.5, 609-614, 2013
상온에서의 용매 처리를 통한 저등급 석탄의 표면물성 및 자연발화 특성 변화
Surface Characteristics and Spontaneous Combustibility of Coal Treated with Non-polar Solvent under Room Temperature
본 연구에서는 유기용매를 이용하여 표면처리한 저등급 석탄의 물성과 자연발화성 변화를 알아보았다. 석탄은 인도네시아 갈탄인 KBB탄과 SM탄 그리고 아역청탄인 Roto탄을 사용하였으며, 비극성 유기용매인 1-methyl naphthalene (1 MN)과 혼합한 후 단순 회전 임펠러 또는 초음파를 이용하여 일정 시간동안 교반하였다. 1MN 처리탄의 물성 변화는 공업 분석, 발열량 분석, FT-IR 분석, XPS 분석, 그리고 수분 재흡착 실험을 통해 알아보았으며, 자연 발화성 변화는 Crossing-Point Temperature 분석과, 산화에 의해 발생되는 CO, CO2 가스 분석을 통해 확인하였다. FT-IR 분석 결과 처리탄들의 수소와 산소를 포함한 결합기들이 줄었다. XPS분석 결과 원탄들에 비해 처리탄들의 C-O, C=O 그리고 COO- 피크는 감소하고 C-C 피크는 상대적으로 증가하였다. 그리고 수분 재흡착성 측정 결과 처리탄들 표면의 소수성이 증가함을 확인하였다. CPT 측정 결과 원탄들에 비해 처리탄들의 CPT 값이 20 ℃ 이상 증가하였는데, 단순 기계적 교반보다 초음파 교반 방식으로 처리한 석탄의 CPT 값이 높았다. 이때 배출되는 가스의 분석에서도 처리탄들이 원탄들에 비해 CO와 CO2 가스 발생량이 적고 발생 시점이 늦어져 자연발화성이 억제되는 것으로 나타났다. 이는 석탄을 유기용매로 처리함으로써 미리 산화반응에 참여하는 표면의 기능기들이 제거되어 자연발화성이 억제되는 것이며, 이에 단순 기계적 교반 방식보다는 초음파 교반 방식이 보다 효과적임을 확인하였다.
This study investigated the spontaneous combustion behavior of solvent-treated low rank coals. Indonesian lignite (a KBB and SM coal) and sub-bituminous (a Roto coal) were mixed with non-polar 1-methyl naphthalene (1MN) either by mechanical agitation or ultrasonication. The property change associated with 1MN treatment was then analyzed using proximate analysis, calorific value analysis, Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy and moisture re-adsorption test. Susceptibility to spontaneous combustion was evaluated using crossingpoint temperature (CPT) measurement along with gas analysis by GC. A FT-IR profile showed that oxygen functional groups and C-H bonding became weaker when treated by 1 MN. XPS results also indicated a decrease of the oxygen groups (C-O-, C=O and COO-). Increased hydrophobicity was found in the 1MN treated coals during moisture readsorption test. A CPT of the treated coals was ~20 oC higher than that of the corresponding raw coals and the ultrasonication was more effective way to enhance the stability against spontaneous combustion than the agitation. In the gas analysis less CO and CO2 were emitted from 1MN treated coals, also indicating inhibition of pyrophoric behavior. The surface functional groups participating in the oxidation reaction seemed to be removed by the ultrasonication more effectively than by the simple mechanical agitation.
[References]
  1. Keith C, “Commercial Scale Low Rank Coal Upgrading Using the BCB Process,” Presentation at the 2nd Coaltrans Upgrading Coal Forum, Indonesia, 2010
  2. Sarinac N, Ness M, Bullinger C, “One Year of Operating Experience with a Prototype Fluidized Bed Coal Dryer at Coal Creek Generating Station,” Proc. of the Third International Conference on Clean Coal Technologies for our Future, Italy, 2007
  3. Kim SD, Lee SH, Rhim YJ, Choi HK, Lim JH, Chun DH, Yoo JH, Korean Chem. Eng. Res., 50(1), 106, 2012
  4. Park JH, Shun DW, Bae DH, Park YC, Ryu HJ, “Coal Upgrading by Multi-chamber Fluidized Bed Drying System," Proc. of the 1st International Conference on Energy, Environment and Climate Change, Vietnam, 2011
  5. Choi H, Thiruppathiraja C, Kim S, Rhim Y, Lim J, Lee S, Fuel Process. Technol., 92(10), 2005, 2011
  6. Wang DM, Zhong XX, Gu JJ, Qi XY, Mining Sci. Technol., 20, 35, 2010
  7. Brooks KV, Svanas N, Glasser D, Fuel., 67, 651, 1988
  8. Yuan LM, Smith AC, Int. J. Coal Geol., 88(1), 24, 2011
  9. Schmidt LD, “Changes in Coal During Storage. In Chemistry of Coal Utilization,” Lowry HH, Ed. John Wiley & Sons: New York, 627, 1945
  10. Itay M, Hill CR, Glasser DA, Fuel Process. Technol., 21, 81, 1989
  11. Wang H, Dlugogorski BZ, Kennedy EM, Prog.Energy Combust. Sci., 29, 487, 2003
  12. Wang HH, Dlugogorski BZ, Kennedy EM, Fuel, 81(15), 1913, 2002
  13. Datin FU, Bukin D, Hiromoto U, Tetsuya D, Satoru S, Coal Prep., 25, 31, 2005
  14. Japan Coal Energy Center; Kobe Steel, Ltd., “Low-rank Coal Upgrading Technology (UBC process),” Clean Coal Technologies in Japan, NEDO, 77, 2006
  15. Chun DH, Park IS, Cho WT, Jo EM, Kim SD, Choi HK, Yoo J, Lim JH, Rhim YJ, Lee S, Clean Technol., 19(1), 38, 2013
  16. Sato Y, Kushiyama S, Tatsumoto K, Yamaguchi H, Fuel Process. Technol., 85(14), 1551, 2004
  17. Takanohashi T, Yanagida T, Iino M, Mainwaring DE, Energy Fuels, 10(5), 1128, 1996
  18. Ashida R, Morimoto M, Makino Y, Umemoto S, Nakagawa H, Miura K, Saito K, Kato K, Fuel, 88(8), 1485, 2009
  19. Buckley AN, Lamb RN, Int. J. Coal Geol., 32(1), 87, 1996
  20. Wu B, Hu HQ, Zhao YP, Jin LJ, Fang YM, J. Fuel Chem. Technol., 37, 385, 2009
  21. Jo W, Choi H, Kim S, Yoo J, Chun D, Rhim Y, Lim J, Lee S, Korean J. Chem. Eng., 30(5), 1034, 2013
  22. Xuyao Q, Wang DM, Milke JA, Zhong XX, Mining Sci. Technol., 21, 255, 2011
  23. Behera P, Mohanty G, J. Sci. Res., 1, 55, 2009
  24. Kucuk A, Kadioglu Y, Gulaboglu MS, Combust. Flame, 133(3), 255, 2003
  25. Kadioglu Y, Varamaz M, Fuel, 82(13), 1685, 2003
  26. Wang HH, Dlugogorski BZ, Kennedy EM, Energy Fuels, 17(1), 150, 2003
  27. Ibarra JV, Moliner R, Gavilan MP, Fuel., 70, 408, 1991
  28. Carras JN, Young BC, Prog. Energy Combust. Sci., 20, 1, 1994