Issue
Korean Chemical Engineering Research,
Vol.51, No.5, 602-608, 2013
온도, 직경, 형태에 따른 CO2 하이드레이트의 자기보존효과 특성 연구
Study on Characteristic of Self-preservation Effect of CO2 Hydrate according to Temperature, Particle Diameter and Shape
CO2를 포집, 수송, 저장하는 기술에 있어서 경제적이고 친환경적 혁신기술로 주목받고 있는 가스 하이드레이트 이용기술의 연구가 활발히 진행되고 있다. 본 연구에서는 가스 하이드레이트를 이용한 CO2 수송/저장기술의 핵심이 되는 자기보존효과(self-preservation effect)가 발현하는지를 확인하고자 하였다. 특히 CO2 하이드레이트 입자의 직경에 대한 효과 정도를 실험적으로 살펴보았다. 밀리미터, 마이크론, 그리고 나노 크기의 각각 다른 직경을 갖는 세 종류 CO2 하이드레이트 샘플을 준비하였고, 3주간 -15~-30 ℃의 온도 및 대기압 조건에서 각각의 샘플 무게 변화를 측정하였다. 실험연구 결과 CO2 하이드레이트의 자기보존효과를 최대한 얻기 위해서는 온도는 가능한 낮아야 하며, 샘플의 직경 크기가 클수록 좋고, 샘플은 치밀한 구조로 조직되어 높은 밀도를 갖는 방식으로 제조하는 것이 매우 향상된 결 과를 얻을 수 있음을 확인하였다.
Gas hydrate studies are attracting attention of many researchers as an innovative, economic and environmentally friendly technology when it is applied to CO2 capture, transport, and storage. In this study, we investigated whether CO2 hydrate shows the self-preservation effect or not, that is the key property for developing a novel CO2 transport/storage method. Especially the degree of self-preservation effect for CO2 hydrate was studied according to the particle size of CO2 hydrate samples. We prepared three kinds of CO2 hydrate samples varying their particle diameter as millimeter, micron and nano size and measured their change of weight at -15~-30 ℃ under atmospheric pressure during 3 weeks. According to our experimental result, the lower temperature, larger particle size, and compact structure for higher density are the better conditions for obtaining self-preservation effect.
[References]
  1. Lee H, Lee CS, Kang JM, HWAHAK KONGHAK, 41(2), 135, 2003
  2. Gibbins J, Chalmers H, Energy Policy, 36(12), 4317, 2008
  3. Hendriks CA, Blok K, Energy Conv. Manag., 33(5-8), 387, 1992
  4. Anderson S, Newell R, Ann. Rev. Environ. Res., 29, 109, 2004
  5. Farla JCM, Hendriks CA, Blok K, Energy Conv. Manag., 29(6-9), 827, 1995
  6. Sloan ED, Koh CA, “Clathrate Hydrates of Natural Gases,” 3rd Ed., CRC press, Boca Raton, 1, 2007
  7. Makogon YF, “Hydrates of Hydrocarbons,” PennWell Books, Tulas, 1, 1997
  8. Lee H, Lee JW, Kim DY, Park JS, Seo YT, Zeng H, Moudrakovski IL, Ratcliffe CI, Ripmeester JA, Nature., 434(7034), 743, 2005
  9. Kim DY, Park Y, Lee H, Catal. Today, 120(3-4), 257, 2007
  10. Ogata K, Hashimoto S, Sugahara T, Moritoki M, Sato H, Ohgaki K, Chem. Eng. Sci., 63(23), 5714, 2008
  11. Gudmunsson JS, Parlaktuna M, Khokhar AA, SPE Production & Facilities., 9(1), 69, 1994
  12. Falenty A, Kuhs WF, J. Phys. Chem. B, 113(49), 15975, 2009
  13. Gudmundsson JS, Parlaktuna M, Levik OI, Andersson V, Ann. NY Acad. Sci., 912, 851, 2000
  14. Kuhs WF, Genov G, Satykova DK, Hansen T, Phys. Chem. Chem. Phys., 6(21), 4917, 2004
  15. Sun D, Shimono Y, Takeya S, Ohmura R, Ind. Eng. Chem. Res., 50(24), 13854, 2011
  16. Lee JH, Kang SP, Korean Chem. Eng. Res., 50(4), 690, 2012
  17. Kang SP, Lee JW, Ryu HJ, Fluid Phase Equilib., 274(1-2), 68, 2008
  18. Tanaka S, Maruyama F, Takano O, “Experimental Study on CO2 Storage and Sequestration in Form of Hydrate Pellets,” Int. Confer. on Gas Hydrate, Trondheim, Norway, 2005