Issue
Korean Chemical Engineering Research,
Vol.51, No.5, 580-586, 2013
Siloxane 유-무기 복합막 제조와 투과증발법을 이용한 Acetone-Butanol-Ethanol (ABE) 용액에서 부탄올의 분리
Preparation of Organic/Inorganic Siloxane Composite Membranes and Concentration of n-butanol from ABE Solution by Pervaporation
본 연구에서는 투과증발 공정에서 지지체에 따른 투과특성의 차이를 알아보기 위해 고분자 지지체 복합막과 세라믹 지지체 복합막을 제조하였다. 고분자 지지체로는 polyvinylidene fluoride (PVDF)를 사용하였으며 세라믹 지지체로는 a-Al2O3 를 사용하였다. 활성층으로는 각각의 지지체에 고무상 고분자인 polydimethoxysilane (PDMS)를 코팅하였다. 제조한 복합막의 구조와 특성을 살펴보기 위해 SEM, contact angle, XPS로 분석하였으며, 이를 투과증발 공정에 적용하여 다성분계의 혼합용액에서 복합막의 지지체에 따른 투과 특성을 알아보았다. 투과 증발 실험 결과 세라믹 지지체 복합막의 투과 플럭스는 250.87 g/m2h로 고분자 지지체 복합막의 159.64 g/m2h 보다 높은 투과 플럭스를 나타내었다. 그러나 선택도의 경우 고분자 지지체 복합막이 31.98로 20.66인 세라믹 지지체 복합막보다 더 높게 나타나는 것을 확인하였다.
In this paper, polymer composite membranes and ceramic composite membranes were prepared in order to compare differences in pervaporation performances relative to the support layers. PVDF was used for the polymer support layers, and a-Al2O3 was used for the ceramic support layers. For active layer was coated for PDMS, which is a rubbery polymer. The characterization of membranes were analysed by SEM, contact angle, and XPS. We studied performances relative to the composite membrane support layers in the ABE mixture solutions. The results of the pervaporation, the flux of the ceramic composite membrane was shown to be 250.87 g/m2h, which was higher than that of polymer composite membranes, at 195.64 g/m2h. However, it was determined that the separation factor of the polymer composite membranes was 31.98 which were higher than that of the ceramic composite membranes, at 20.66.
[References]
  1. Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA, Biomass Bioenerg., 34(4), 559, 2010
  2. Huang JC, Meagher MM, J. Membr. Sci., 192(1-2), 231, 2001
  3. Baudot A, Marin M, Food and Bioproducts Processing., 75, 117, 1997
  4. Trifunovic O, Tragardh G, J. Membr. Sci., 259(1-2), 122, 2005
  5. Zhu YX, Xia SS, Liu GP, Jin WQ, J. Membr. Sci., 349(1-2), 341, 2010
  6. Verkerk AW, Van MP, Vorstman MAG, Keurentjes JTF, Sep. Purif.Technol., 22-23, 689, 2001
  7. Fouad EA, Feng XS, J. Membr. Sci., 323(2), 428, 2008
  8. Hong YK, Hong WH, J. Membr. Sci., 159, 29, 1990
  9. Kim HJ, Song YS, Min BR, Membrane J., 9(1), 51, 1999
  10. Blume I, Wijmans JG, Baker RW, J. Membr.Sci., 49, 253, 1990
  11. Uragami T, Doi T, Miyata T, Int. J. Adhes. Adhes., 19, 405, 1999
  12. Smitha B, Suhanya D, Sridhar S, Ramakrishna M, J. Membr. Sci., 241(1), 1, 2004
  13. Lipnizki F, Olsson J, Wu P, Weis A, Tragardh G, Field RW, Sep. Sci.Technol., 37, 1474, 2002
  14. Choi GY, Han HH, Lee YT, Membrane J., 18(2), 176, 2008
  15. Lee KH, Sea B, Lee DW, Membrane J., 7, 42, 2005
  16. Wheeler DR, Pepper SV, Surf. Interface Anal., 10, 153, 1987
  17. James E, “Physical Properties of Polymers Handbook,” Springer, 2007
  18. Tonangi SK, Chase GG, Sep. Purif. Technol., 16(1), 1, 1999
  19. Kong C, Cho M, Lee Y, Korean Chem. Eng. Res., 49(6), 816, 2011
  20. Durre P, Bio-technology Journal., 2, 1525, 2007
  21. Barton AFM, “CRC Handbook of Solubility Parameter and Other Cohesion Parameter,” CRC press Inc., Ch. 7, p110, London, 1983