Issue
Korean Chemical Engineering Research,
Vol.51, No.5, 550-555, 2013
Poly(acrylonitrile) 부직포 분리막에 코팅된 하이드로겔 고분자 전해질을 포함하는 활성탄 수퍼커패시터 특성
Electrochemical Properties of Activated Carbon Supecapacitor Containing Poly(acrylonitrile) Nonwoven Separator Coated by a Hydrogel Polymer Electrolyte
6M KOH 수계 전해액에 potassium poly(acrylate) (PAAK)를 3 wt% 포함시켜 제조한 하이드로겔을 poly(acrylonitrile) 부직포 분리막에 코팅하고, 이를 활성탄 수퍼커패시터의 분리막 및 전해질로 사용하여 수퍼커패시터의 고율특성 향상을 시도하였다. 이 분리막 및 전해질은전자현미경 관찰 결과 PAAK 하이드로겔이 부직포의 표면기공에 균일하게 코팅되어 있으며, 24일 동안 하이드로겔의 합습도가 230% 이상으로 균일하게 유지되었고, 6 M KOH 전해액을 사용한 경우(3.6×10^(-2) S cm^(-1))보다 약간 낮은 2.9×10^(-2) S cm^(-1)의 이온전도도를 나타내었다. 활성탄을 활물질로 사용한 대칭형 수퍼커패시터에 이 분리막 및 전해질을 채택한 경우 사이클릭볼타메트리 시험에서 1000 mV s^(-1)의 고속스캔 조건에서도 27 F g^(-1)이상의 높은 비축전용량과 1000 사이클 경과후에도 97% 이상의 유지율을 나타내는데, 이는 부직포 상에 코팅된 PAAK 하이드로겔 전해질이 활성탄 전극과 부직포 분리막 사이에서 강력한 계면밀착을 유지할 수 있기 때문이다.
A hydrogel electrolyte consisting of potassium poly(acrylate) (PAAK) (3 wt%) in 6 M KOH aqueous solution is coated on poly(acrylonitrile) nonwoven separator to examine high-rate characteristics of activated carbon supercapacitor adopting the separator. The hydrogel is homogeneously coated on the surface pores of the nonwoven separator. The electrolyte uptake of the PAAK hydrogel maintains for 24 days higher than 230% and the coated separator shows slightly lower ionic conductivity (2.9×10^(-2) S cm^(-1)) than that (3.6×10^(-2) S cm^(-1)) of using 6 M KOH only. The activated carbon supercapacitor adopting the coated separator shows a specific capacitance higher than 27 F g^(-1) at 1000 mV s^(-1) and a retention ratio higher than 97% after the 1000th cycle. This is due to strong interfacial contact of coated hydrogel electrolyte between the activated carbon electrode and the nonwoven separator.
[References]
  1. Song JY, Wang YY, Wan CC, J. Power Sources, 77(2), 183, 1999
  2. Kumar Y, Hashmi SA, Pandey GP, Solid State Ion., 201(1), 73, 2011
  3. Raghaven P, Choi JW, Ahn JH, Cheruvally G, Chauhan GS, Ahn HJ, Nah C, J. Power Sources, 184(2), 437, 2008
  4. Yang CR, Jia ZD, Guan ZC, Wang LM, J. Power Sources, 189(1), 716, 2009
  5. Gopalan AI, Santhosh P, Manesh KM, Nho JH, Kim SH, Hwang CG, Lee KP, J. Membr. Sci., 325(2), 683, 2008
  6. Choi ES, Lee SY, J. Mater. Chem., 21(38), 14747, 2011
  7. Kritzer P, J. Power Sources, 161(2), 1335, 2006
  8. Croce F, Focarete ML, Hassoun J, Meschini I, Scrosati B, Energy Environ. Sci., 4(3), 921, 2011
  9. Lee KT, Wu NL, J. Power Sources, 179(1), 430, 2008
  10. Lee KT, Lee JF, Wu NL, Electrochim. Acta, 54(26), 6148, 2009
  11. Nam HS, Wu NL, Lee KT, Kim KM, Yeom CG, Hepowit LR, Ko JM, Kim JD, J. Electrochem. Soc., 159(6), A899, 2012
  12. Carol P, Ramakrishnan P, John B, Cheruvally G, J. Power Sources, 196(23), 10156, 2011
  13. Cho TH, Sakai T, Tanase S, Kimura K, Kondo Y, Tarao T, Tanaka M, Electrochem. Solid State Lett., 10(7), A159, 2007
  14. Xiao QZ, Wang XZ, Li W, Li ZH, Zhang TJ, Zhang HL, J. Membr. Sci., 334(1-2), 117, 2009
  15. Rajendran S, Prabhu MR, Rani MU, J. Power Sources, 180(2), 880, 2008
  16. Hao J, Lei G, Li Z, Wu L, Xiao Q, Wang L, J. Memb. Sci., 428, 11, 2013
  17. Croce F, Brown SD, Greenbaum SG, Slane SM, Salomon M, Chem. Mater., 5(9), 1268, 1993
  18. Yang CR, Perng JT, Wang YY, Wan CC, J. Power Sources., 62(1), 89, 1996
  19. Huang BY, Wang ZX, Li GB, Huang H, Xue RJ, Chen LQ, Wang FS, Solid State Ion., 85(1-4), 79, 1996
  20. Huang BY, Wang ZX, Chen LQ, Xue RJ, Wang FS, Solid State Ion., 91(3-4), 279, 1996
  21. Wang ZX, Huang BY, Xue RJ, Huang XJ, Chen LQ, Solid State Ion., 121(1-4), 141, 1999
  22. Chen-Yang YW, Chen HC, Lin FJ, Chen CC, Solid State Ion., 150(3-4), 327, 2002
  23. Min HS, Ko JM, Kim DW, J. Power Sources., 119-121, 469, 2003
  24. Raghavan P, Manuel J, Zhao X, Kim DS, Ahn JH, Nah C, J. Power Sources, 196(16), 6742, 2011
  25. Zhang SS, J. Power Sources, 164(1), 351, 2007
  26. Kim SG, Yim JB, Kim KM, Lee YW, Kim MS, Kang AS, HWAHAK KONGHAK, 39(4), 424, 2001
  27. Kim J, Kwon YK, Lee JK, Choi HS, Korean Chem. Eng. Res., 50(6), 1043, 2012
  28. Cho WJ, Yeom CG, Kim BC, Kim KM, Ko JM, Yu KH, Electrochim. Acta., 89, 807, 2013
  29. Won JH, Kim YJ, Lee YG, Kim KM, Kim JH, Ko JM, J. Korean Electrochem.Soc., 16(2), 91, 2013
  30. Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y, J. Phys. Chem. B., 109(15), 7330, 2005