Issue
Korean Chemical Engineering Research,
Vol.51, No.3, 382-387, 2013
생분해성 폴리우레탄/클레이 나노복합 필름의 제조 및 특성 연구
Preparation and Characteristics of Biodegradable Polyurethane/Clay Nanocomposite Films
압출 컴파운딩 공정 및 케스팅 필름 공정을 이용하여 생분해성 폴리우레탄(PU)/클레이 나노복합 필름을 제조하였다. PU 수지와의 강한 결합 형성을 위해 유기적으로 개질되어 그 표면에 많은 양의 히드록시기를 갖는 MMT 나노클레이 (C30B)를 사용하였다. 압출 공정 중 발생된 높은 전단 응력에 의해 발현된 복합체 내 나노판상체의 삽입/박리 구조 및 분산 상태를 XRD 분석 및 TEM 관찰을 통해 확인하였다. 또한 제조된 나노복합체의 유변물성, 인장물성, 투명성, 산소투과도의 변화를 첨가된 나노클레이 함량에 따라 조사하였으며, 이로부터 나노복합체 내 나노판상체의 박리 및 분산 구조와 물성과의 상관 관계를 제시할 수 있었다. 일정수준의 함량으로 첨가된 나노클레이는 복합 필름의 인장 탄성율, 연신율, 투명성, 산소차단성 등의 성능 향상에 뚜렷하게 기여하였으나, 그 이상의 함량으로 첨가되면 불완전한 박 리 및 불균질한 분산성으로 인하여 오히려 성능이 감소하거나 또는 그 증가 폭이 매우 작은 것으로 나타났다. PU/clay 나노복합 필름의 생분해성은 퇴비화 실험을 통한 분해시간에 따른 필름의 산소투과도 및 인장물성의 변화를 관찰함으로써 확인하였다.
Biodegradable polyurethane (PU)/clay nanocomposite films were prepared via extrusion compounding process followed by casting film process. Organically modified montmorillonite (denoted as C30B) with a large amount of hydroxyl groups on its surface was used for the formation of strong bonding with PU resin. From both XRD analysis and TEM observations, the intercalated and exfoliated structure, and dispersion state of silicate platelets in the compounded nanocomposite films were confirmed. In addition, the rheological and tensile properties, optical transparency, oxygen permeability of the prepared nanocomposites were investigated as a function of added nanoclay content, and moreover based on these results, the corelation between the morphology and the resulting properties of the nanocomposites could be presented. The inclusion of nanoclays at appropriate content resulted in remarkable improvement in the nanocomposite performance including tensile modulus, elongation, transparency, and oxygen barrier property, however at excess amount of nanoclays, reduction or very slight increase was observed due to poor dispersion. The biodegradability of the prepared nanocomposite film was evaluated by examining the deterioration in the barrier and tensile properties during degradation period under compost.
[References]
  1. Lilichenko N, Marksimov RD, Zicans J, Meri RM, Plume E, Mech. Compos. Mater., 44(1), 45, 2008
  2. Sorrentino A, Gorrasi G, Vittoria V, Trends Food Sci. Tech., 18, 84, 2007
  3. Blackwell AL, in Finlayson KM (Ed.), Plastic Film Technology: High Barrier Plastic Films for Packaging, Technomic, Lancaster, 41, 1989
  4. Guilbert S, Cuq B, Gontard N, Food Additives and Contaminants., 14(6), 741, 1997
  5. Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilssonk NH, Trends Food Sci. Tech., 10, 52, 1999
  6. Cho MW, Chang YW, J. Korean Ind. Eng. Chem., 11(5), 517, 2000
  7. Cho TW, Kim SW, J. Appl. Polym. Sci., 121(3), 1622, 2011
  8. Chavarria F, Paul DR, Polymer, 47(22), 7760, 2006
  9. Lee SK, Seong DG, Youn JR, Fibers and Polymers., 6(4), 289, 2005
  10. Chen G,Yoon J, Polym. Degrad.Stab., 88, 206, 2005
  11. Ray SS, Yanada K, Okamato M, Ueda K, J. Nanosci.Nanotechnol., 3(6), 503, 2003
  12. Chang J, An YU, Sur GS, J. Polym. Sci.: Part B:Polym. Physic., 41, 94, 2002
  13. Yang KK, Wang XL, Wang YZ, J. Ind. Eng. Chem., 13(4), 485, 2007
  14. Ray SS, Okamoto K, Okamoto M, J. Appl. Polym. Sci., 102(1), 777, 2006
  15. Li Y, Shimizu H, Macromol. Biosci., 7, 921, 2007
  16. Yeo JH, Lee CH, Park CS, Lee KJ, Nam JD, Kim SW, Adv. Polym. Technol., 20(3), 191, 2001
  17. Kim D, Kim SW, Korean J. Chem. Eng., 20(4), 776, 2003
  18. Dan CH, Lee MH, Kim YD, Min BH, Kim JH, Polymer, 47(19), 6718, 2006
  19. Meng X, Du X, Wang Z, Bi W, Tang T, Compos. Sci. Tech., 68, 1815, 2008
  20. Lee SU, Oh IH, Lee JH, Choi KY, Lee SG, Polym.(Korea), 29(3), 271, 2005
  21. Finnigan B, Martin D, Halley P, Truss R, Campbell K, Polymer, 45(7), 2249, 2004
  22. Rosen SL, Fundamental Principles of Polymeric Materials, 2nded., John Wiley & Sons, New York, NY, 1993