Issue
Korean Chemical Engineering Research,
Vol.51, No.3, 376-381, 2013
FTIR을 이용한 왁스 침전의 정량적 예측
Prediction of Precipitated Wax Amounts Using FTIR Spectroscopy
원유에 함유된 물질 중 분자량이 큰 파라핀계 왁스성분의 침전 거동을 연구하였다. 용해되어 녹아있는 왁스성분은 주위 온도가 낮아지면 침전을 시작한다. 침전이 시작되는 온도를 왁스침전온도라 하며, 왁스침전온도에 대해서는 다양한 측정 방법들이 연구되어 왔다. 이에 반하여, 온도하강에 따른 왁스 침전량, 즉 온도에 따른 정량화 시도는 상대적으로 많지 않다. 본 연구는 FTIR을 활용하여 온도에 따른 침전된 왁스의 정량화를 시도하였다. 기존에 제안된 방법이 FTIR의 한 밴드영역인 735~715 cm^(-1)에서 시도되었던 것과 비교하여, 본 연구에서는 두 밴드영역인 1,402~1,324 cm^(-1)와 735~715 cm^(-1)을 활용하였다. 이 방법을 이용하여 정량화를 시도하였을 때, 온도에 따른 부피변화가 있을 경우나 시료에 물이 함유된 경우와 같이 기존 방법에서는 측정이 불가능한 경우에도 안정적인 결과를 얻을 수 있었다.
High molecular weight paraffinic waxes dissolved in oil phases can be precipitated when the surrounding temperature becomes lower than the wax appearance temperature (WAT). While the various methods of WAT determination have been developed, the determination of precipitated wax amount has not been comparably popular at temperatures below the WAT. It is important to predict how much solid wax content precipitates in temperature variance. The study develops the previous method which uses integrated areas determined at a wavenumber range of 735~715 cm^(-1). This method uses two different wavenumber ranges, 735~715 cm^(-1) and 1,402~1,324 cm^(-1). The study shows how the method provides reliable data in the variety of applications regardless of FTIR spectral instability often occurred, such as volume reduction during cooling procedure and existence of emulsified water in oil phase.
[References]
  1. http://www.basf.com/group/corporate/en/brand/MICRONAL_PCM.
  2. http://www.sasolwax.com.
  3. Pedersen KS, Skovborg P, Rønningsen HP, Energy Fuels., 5, 924, 1991
  4. Roehner RM, Hanson FV, Energy Fuels, 15(3), 756, 2001
  5. Roehner RM, Fletcher JV, Hanson FV, Energy Fuels, 16(1), 211, 2002
  6. Golczynski TS, Kempton EC, World oil., 227, D7, 2006
  7. Annual Book of ASTM-Standards, “Petroleum Products, Lubricants," West Conshohocken, Pa.: American Society for Testing and Materials, Sec. 5., 1999
  8. Rønningsen HP, Bjorndal B, Hansen AB, Pedersen WB, Energy Fuels., 5(6), 895, 1991
  9. Ferworn K, Hammami A, Ellis H, “Control of Wax Deposition: An Experimental Investigation of Crystal Morphology and An Evaluation of Various Chemical Solvents,” SPE37240. In: SPE International Symposium on Oilfield Chemistry, Houston, TX, February, 1997
  10. Singh P, Fogler HS, Nagarajan N, J. Rheol., 43(6), 1437, 1999
  11. Oh K, Deo MD, Fuel, 90(6), 2113, 2011
  12. Oh K, Jemmett M, Deo M, Ind. Eng. Chem. Res., 48(19), 8950, 2009
  13. Oh K, Deo M, Energy Fuels, 23, 1289, 2009
  14. Coutinho JA, Ruffiermeray V, Ind. Eng. Chem. Res., 36(11), 4977, 1997
  15. Snyder R, Maroncelli M, Strauss HL, Hallmark V, J. Phys. Chem., 90, 5623, 1986
  16. Oh K, “Prediction of Wax Appearance Temperature and Solid Wax Amount by Reduced Spectral Analysis using FTIR Spectroscopy" U.S. Patent No. 8,326,548 B2, 2012