Issue
Korean Chemical Engineering Research,
Vol.51, No.3, 358-363, 2013
진공튜브 속에서 분해하는 리튬암모니아 솔루션의 열전효율 향상
Thermoelectric Efficiency Improvement in Vacuum Tubes of Decomposing Liquid Lithium-Ammonia Solutions
순수한 리튬-암모니아(Li-NH3) 솔루션의 생성은 진공 상태에서 가능하지만, 고효율 열전전력을 얻기 위한 안정적이고 신뢰성 있는 분해에 대한 문제가 아직 남아있다. 본 논문은 Li-NH3 솔루션의 열전변환 효율을 향상시키기 위한 새로운 방법을 다루었다. 제안된 방법은 Li-NH3 솔루션의 합성과 분해를 위해 ‘U’ 형태의 파이렉스 진공 튜브를 사용하였다. 튜브 상부에는 기존 ‘U’ 형태의 파이렉스 진공 튜브의 두 다리를 연결하는 기체의 이동통로가 있는데, 이는 고온부(Hot side)에서 분해가 진행될 때 NH3 기화에 따른 양단의 내부압력 불균형을 방지하는 역할을 한다. 열전 실험 결과, ‘U’ 형태 튜브 속에서 솔루션 반응은 기존 'U' 형태에 비해 매우 안정적이고 효율적으로 이루어졌으며, 결과적으로 열전변환 효율이 향상됨을 보였다. 또한, 제안 방식은 장시간에 걸친 고효율 열전 발전을 위해 튜브 속에서 합성과 분해가 순환되는 가역반응을 제공함이 입증되었다.
Lithium-ammonia (Li-NH3) solutions are possible to be successfully made under the vacuum condition but there still remains a problem of undergoing stable and reliable decomposition in vacuum for high-efficiency thermoelectric power generation. This paper describes a new method for improving the thermoelectric conversion efficiency of Li-NH3 solutions in vacuum. The proposed method uses a ‘U’-shaped Pyrex vacuum tube for the preparation and decomposition of pure fluid Li-NH3 solutions. The tube is shaped so that a gas passageway (‘U’) connecting both legs of the ‘U’ helps to balance pressure inside both ends of the tube (due to NH3 gasification) during decomposition on the hot side. Thermoelectric experimental results show that solution reaction in the ‘U’-shaped tube proceeds more stably and efficiently than in the ‘U’-shaped tube, and consequently, thermoelectric conversion efficiency is improved. It is also proved that the proposed method can provide a reversible reaction, which can rotate between synthesis and decomposition in the tube, for deriving the long-time, high-efficiency thermoelectric power.
[References]
  1. Hayama S, Skipper NT, Wasse JC, Thompson H, J. Chem. Phys., 116(7), 2991, 2002
  2. Wasse JC, Hayama S, Masmanidis S, Stebbings SL, Skipper NT, J. Chem. Phys., 118(16), 7486, 2003
  3. Salter TE, Mikhailov VA, Evans CJ, Ellis AM, J. Chem.Phys., 125(1-10), 034302, 2006
  4. Salter TE, Ellis AM, J. Phys. Chem. A, 111(23), 4922, 2007
  5. Chuev GN, Quemerais P, Crain J, J. Chem. Phys., 127(1-16), 244501, 2007
  6. Lee JM, Jhon MS, Bull. Kor. Chem. Soc., 2, 90, 1981
  7. Schulz CP, Gerber A, Nitsch C, Hertel IV, Z. Phys. D., 20, 65, 1991
  8. Almeida TS, Cabral BJC, J. Chem. Phys., 132(1-10), 094307, 2010
  9. Dewald JF, Lepoutre G, J. Am. Chem. Soc., 76, 3369, 1954
  10. Arendt P, Electrochim. Acta., 30, 709, 1985
  11. Arendt P, Electrochim. Acta., 31, 445, 1986
  12. Arendt P, J. Phys. Chem. Solids., 49, 511, 1988
  13. Arendt P, Solid State Commun., 74, 559, 1990
  14. Jeon J, Kim J, Adv. Sci. Lett., 8, 550, 2012
  15. Park H, Kim J, Jeon J, AAPG Bull., 49, 263, 2011
  16. Yurtseven H, Caglar O, Korean J. Chem. Eng., 27(1), 249, 2010