Issue
Korean Chemical Engineering Research,
Vol.51, No.3, 352-357, 2013
정수장 슬러지로부터 제조한 입상흡착제의 염기성 가스 흡착 성능
Adsorption Performance of Basic Gas over Pellet-type Adsorbents Prepared from Water Treatment Sludge
본 연구에서는 정수장 슬러지를 사용하여 제조한 정수슬러지 가공 분말의 압출공정을 통해서 입상흡착제를 제조하였다. 바인더 첨가와 소성과정이 입상형 흡착제의 물리·화학적 특성에 미치는 영향을 질소흡착, 압축강도, 주사전자현미경, 엑스선회절, 피리딘흡착 적외선분광법 등으로 분석하였다. 바인더의 함량을 5 wt%까지 증가시키면 압축강도가 3배 이상으로 개선되었으나 트리메틸아민을 흡착할 수 있는 표면적이 30% 정도 감소하여 입상흡착제의 트리메틸아민 파과시간이 단축되었다. 성형된 입상흡착제의 소성과정을 통해서 표면에 브뢴스테드산점과 루이스산점으로 구성된 산점이 발현되어, 염기성 기체인 트리메틸아민의 파과 시간이 3배 이상으로 증가하였다.
In this study, the pellet-type adsorbents were prepared by extrusion using water treatment sludge. Effects of binder and calcination on physical and chemical properties of pellet-type adsorbents were investigated. The porous structure and surface characteristics of the adsorbents were studied using nitrogen adsorption, compression strength, scanning electron microscope, X-ray diffraction, and infrared spectroscopy of adsorbed pyridine. With increasing of binder content to 5 wt%, the compressive strength of pellet-type adsorbent could be improved more than three times, but the surface area reduced by 30%, and thus the breakthrough time of trimethylamine was shortened. The breakthrough time of the trimethylamine, a basic gas, could be increased more than three times through calcination, which seems to be due to generation of acid sites composed of Lewis acid and Bronsted acid sites on the adsorbent surface.
[References]
  1. Kang KC, Kim YH, Kim J, Lee CH, Rhee SW, Appl. Chem. Eng., 22(2), 173, 2011
  2. Hwang HU, Kim JH, Kim YJ, J. Kor. Soc.Environ. Eng., 3, 217, 2009
  3. Lee JK, Beak SG, Kim ZC, Lee JI, Pyo BS, Choi JG, Kim PC, Park GH, J. KOWREC., 8, 103, 2000
  4. Kim JM, Kim MK, Lee JM, Lee CH, Lee SW, Choi DJ, La JM, “Method of Manufacturing a Building Material Composition Eco-friendly,” Korea Patent No. 10-1041094, 2011
  5. Xu GR, Yan ZC, Wang YC, Wang N, J. Hazard. Mater., 161(2-3), 663, 2009
  6. Seredych M, Strydom C, Bandosz TJ, Waste Manage., 28, 1983, 2008
  7. Lee JY, Park SH, Jeon JK, Yoo KS, Kim SS, Park YK, Korean J. Chem. Eng., 28(7), 1556, 2011
  8. Pan ZH, Tian JY, Xu GR, Li JJ, Li GB, Water Res., 45, 819, 2011
  9. Yuan WX, Bandosz TJ, Fuel, 86(17-18), 2736, 2007
  10. Xu GR, Zhang WT, Li GB, Water Res., 39, 5175, 2005
  11. Ding Y, Shi JY, Wu WX, Yin J, Chen YX, J. Hazard. Mater., 143(1-2), 341, 2007
  12. Rouquerol J, Avnir D, Fairbridge CW,, Everet DH, Haynes JH, Pernicone N, Ramsay J, Sing KS, Unger KK, Pure Appl. Chem., 66, 1739, 1994
  13. Lim JW, Choi Y, Yoon HS, Park YK, Yim JH, Jeon JK, J. Ind. Eng. Chem., 16(1), 51, 2010
  14. Yurdakoc M, Akcay M, Tonbul Y, Yurdakoc K, Turk. J. Chem., 23(3), 319, 1999
  15. Palomino GT, Pascual JJC, Delgado MR, Parra JB, Arean CO, Mater. Chem. Phys., 85(1), 145, 2004
  16. Zaki MI, Hasan MA, Al-Sagheer FA, Pasupulety L, Colloids Surf. A: Physicochem. Eng. Aspects., 190, 261, 2001