Issue
Korean Chemical Engineering Research,
Vol.51, No.3, 330-334, 2013
PVdF-HFP와 실리카가 코팅된 실크 견직물의 분리막 특성과 이를 채용한 리튬이온전지의 충방전 특성
Separator Properties of Silk-Woven Fabrics Coated with PVdF-HFP and Silica and the Charge-Discharge Characteristics of Lithium-ion Batteries Adopting Them
실크 견직물 표면에 poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP)와 실리카 나노입자의 혼합물을 코팅한 분리막을 제조하고 분리막에 전해액을 함침시켜 리튬이온전지용 분리막 겸 전해질로 사용하기 위한 특성이 조사되었다. 코팅막의 제조 시에는 전해액이 침투할 수 있는 미세다공의 형성을 심화시키기 위해 dibutylphthalate (DBP) 가소제의 함량을 변화시키면서 코팅된 분리막의 이온전도도, 함습율, 전기화학적 안정성 등을 조사하였고, 이를 리튬이온전지에 탑재하여 여러 전류속도에 대한 충방전 특성도 함께 측정하였다. 결과적으로 실리카가 첨가되고 DBP를 40~50 wt% 사용하여 코팅된 실크 분리막이 가장 우수한 분리막 특성 및 고율 충방전 특성을 나타내었다. 이는 (i) 실크견직물의 우수한 내구성과 내열성 이외에 (ii) DBP에 의한 미세다공 형성, (iii) 실리카에 의한 함습율 향상 등에 의해 코팅막의 표면적 및 코팅된 분리막의 이온전도도가 크게 향상되었기 때문이다.
Mixtures of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and silica nanoparticles are coated on the surface of a silk fabrics separator. The coated separators are finally prepared by injecting an electrolyte solution and then characterized for use of lithium-ion battery separator/electrolyte. In the preparation, various contents of dibutylphthalate (DBP) as a plasticizer are used to enhance the formation of micropores within the coated membrane. The coated silk fabrics separators are characterized in terms of ionic conductivity, drenching rate, and electrochemical stability, and the charge-discharge profiles of lithium-ion batteries adopting the coated separators are also examined. As a result, the coated silk fabrics separator prepared using DBP 40~50 wt% and silica shows the superior separator properties and high-rate capability. This is due to (i) high sustainability of silk fabrics, (ii) the formation of micropores with the coated layer membrane by DBP, (iii) increase in drenching rate by silica nanoparticles to involve great enhancements in specific surface area and ionic conductivity.
[References]
  1. Park JH, Park W, Kim JH, Ryoo D, Kim HS, Jeong YU, Kim DW, Lee SY, J. Power Sources, 196(16), 7035, 2011
  2. Venugopal G, Moore J, Howard J, Pendalwar S, J. Power Sources, 77(1), 34, 1999
  3. Park JH, Cho JH, Park W, Ryoo D, Yoon SJ, Kim JH, Jeong YU, Lee SY, J. Power Sources, 195(24), 8306, 2010
  4. Jeong HS, Kim DW, Jeong YU, Lee SY, J. Power Sources, 195(18), 6116, 2010
  5. Jeong HS, Lee SY, J. Power Sources, 196(16), 6716, 2011
  6. Gohl EPG, Vilensky LD, Textile Science, 2nd Ed., Longman Cheshire, 1980
  7. Sirichaisit J, Brookes VL, Young RJ, Vollrath F, Biomacromolecules, 4(2), 387, 2003
  8. Tarascon JM, Gozdz AS, Schmutz C, Shokoohi F, Warren PC, Solid State Ion., 86-88, 49, 1996
  9. Kim KM, Kim JC, Park NG, Ryu KS, Chang SH, J. Power Sources, 123(1), 69, 2003
  10. Croce F, Appetecchi GB, Persi L, Scrosati B, Nature., 394(6692), 456, 1998
  11. Capiglia C, Mustarelli P, Quartarone E, Tomasi C, Magistris A, Solid State Ion., 118(1-2), 73, 1999
  12. Kim KM, Ryu KS, Kang SG, Chang SH, Chung IJ, Macromol.Chem. Phys., 202(6), 866, 2001
  13. He XM, Shi Q, Zhou X, Wan CR, Jiang CY, Electrochim. Acta, 51(6), 1069, 2005
  14. Kim KM, Park NG, Ryu KS, Chang SH, J. Appl. Polym. Sci., 102(1), 140, 2006
  15. Kim KM, Kim JC, Ryu KS, Macromol. Chem. Phys., 208(8), 887, 2007
  16. Kim JC, Kim KM, Korean Chem. Eng. Res., 46(1), 131, 2008
  17. Jeong HS, Choi ES, Lee SY, Electrochim. Acta., 86, 317, 2012
  18. Jeong HS, Choi ES, Lee SY, Kim JH, J. Memb.Sci., 415-416, 513, 2012
  19. Wang Y, Travas-Sejdic J, Steiner R, Solid State Ion., 148(3-4), 443, 2002
  20. Stallworth PE, Fontanella JJ, Wintersgill MC, Scheidler CD, Immel JJ, Greenbaum SG, Gozdz AS, J. Power Sources, 81-82, 739, 1999
  21. Kim KM, Park NG, Ryu KS, Chang SH, Electrochim. Acta., 51(26), 563, 2006
  22. Kim KM, Kim JC, Ryu KS, Macromol. Mater. Eng., 291(12), 1495, 2006
  23. Christie AM, Christie L, Vincent CA, J. Power Sources, 74(1), 77, 1998
  24. Abraham KM, Jiang Z, Carroll B, Chem. Mater., 9(9), 1978, 1997