Issue
Korean Chemical Engineering Research,
Vol.51, No.3, 319-324, 2013
Ni-Pd/CeO2-ZrO2 금속모노리스 촉매체를 사용한 부분산화반응에 의한 합성가스 제조
Syngas Production by Partial Oxidation Reaction over Ni-Pd/CeO2-ZrO2 Metallic Monolith Catalysts
합성가스를 생산하기 위한 메탄의 부분산화반응 특성을 Ni/CeO2-ZrO2, Ni-Ru/CeO2-ZrO2와 Ni-Pd/CeO2-ZrO2 촉매체를 이용하여 조사하였다. 메탄의 부분 산화 개질 반응에서 촉매의 높은 활성과 안정성을 위하여 허니컴 구조의 금속모노리스 촉매 체를 적용하였다. 촉매분석은 XRD와 FE-SEM을 사용하였으며, 제조된 촉매들의 합성가스 제조 특성은 반응물 비(O/C), GHSV와 온도를 변화시키면서 연구하였다. 개질 실험에서 사용된 촉매 중에서 Ni-Pd/CeO2-ZrO2 촉매 체가 가장 높은 활성을 보여 주었으며, 900 ℃, GHSV=10,000 h^(-1)과 O/C=0.55에서 99%의 메탄 전환율을 얻었다. O/C 비가 증가함에 따라 수소 yield는 증가되고, 반면에 CO yield는 거의 일정하게 유지됨을 확인할 수 있었다. 또한 GHSV가 증가할수록 메탄의 전환율은 감소하였으며, 높은 메탄의 전환율을 얻을 수 있는 GHSV의 범위는 10,000 h^(-1) 이하임을 알 수 있었다.
The partial oxidation reaction of methane was investigated to produce syngas with Ni/CeO2-ZrO2, Ni-Ru/CeO2-ZrO2 and Ni-Pd/CeO2-ZrO2 catalysts. Honeycomb metallic monolith was applied in order to obtain high catalytic activity and stability in partial oxidation reforming. The catalysts were characterized by XRD and FE-SEM. The influence of various catalysts on syngas production was studied for the feed ratio (O/C), GHSV and temperature. Among the catalysts used in the experiment, the Ni-Pd/CeO2-ZrO2 catalyst showed the highest activity. The 99% of CH4 conversion was obtained at the condition of T=900 ℃, GHSV=10,000 h^(-1) and feed ratio O/C=0.55. It was confirmed that H2 yield increased slightly as O/C ratio increased, while CO yield remained almost constant. Also, CH4 conversion decreased as GHSV increased. It was found that the safe range of GHSV for high CH4 conversion was estimated to be less than 10,000 h^(-1).
[References]
  1. Koo JB, Sin JS, Yang JM, Lee JD, Korean Chem. Eng. Res., 50(5), 802, 2012
  2. Lee SH, Mo YG, Shin DG, Baek YS, Cho WI, Trans. of the Korean Hydrogen and New Energy Society., 15(4), 301, 2012
  3. Cho HS, Chung JS, Baek SJ, Choi WJ, Kim JJ, Yoon SK, Lee JC, Appl. Chem. Eng., 23(3), 339, 2012
  4. Krumpelt M, Kumar R, Myles KM, J. Power Sources., 49, 37, 1994
  5. Acres GJK, J. Power Sources, 100(1-2), 60, 2001
  6. Park SH, Chun BH, Kim SH, Korean J. Chem. Eng., 28(2), 402, 2011
  7. Edwards JH, Catal. Today, 23(1), 59, 1995
  8. Juan-Juan J, Roman-Martinez MC, Illan-Gomez MJ, Appl. Catal. A: Gen., 264(2), 169, 2004
  9. Suwa Y, Ito SI, Kameoka S, Tomishige K, Kunimori K, Appl. Catal. A: Gen., 267(1-2), 9, 2004
  10. Hou ZY, Yokota O, Tanaka T, Yashima T, Appl. Catal. A: Gen., 253(2), 381, 2003
  11. Hou ZY, Yokota O, Tanaka T, Yashima T, Catal. Lett., 87(1-2), 37, 2003
  12. Crisafulli C, Scire S, Maggiore R, Minico S, Galvagno S, Catal. Lett., 59(1), 21, 1999
  13. Rostrup-Nielsen JR, J. Catal., 31(2), 173, 1973
  14. Xu S, Wang XL, Fuel, 84(5), 563, 2005
  15. Jung H, Yoon WL, Lee H, Park JS, Shin JS, La H, Lee JD, J. Power Sources, 124(1), 76, 2003
  16. Dong F, Suda A, Tanabe T, Nagai Y, Sobukawa H, Shinjoh H, Sugiura M, Descorme C, Duprez D, Catal. Today., 93, 827, 2004
  17. Thammachart M, Meeyoo V, Risksomboon T, Osuwan S, Catal. Today, 68(1-3), 53, 2001
  18. Zhao S, Zhang J, Weng D, Wu X, Surf.Coat. Technol., 167, 97, 2003
  19. Laosiripojana N, Assabumrungrat S, Appl. Catal. A: Gen., 290(1-2), 200, 2005
  20. Lee TJ, Cho KT, Lee JD, Korean Chem. Eng. Res., 45(6), 663, 2007