Issue
Korean Chemical Engineering Research,
Vol.51, No.3, 308-312, 2013
NaOH 화학적 활성화로 제조된 하이브리드 커패시터의 전기화학적 특성
The Electrochemical Characteristics of Hybrid Capacitor Prepared by Chemical Activation of NaOH
NaOH 화학적 활성화법을 사용하여 야자각 차로부터 고 비표면적과 미세기공이 발달된 활성탄을 제조하였다. 활성탄 제조 공정은 탄화과정에서 활성화 약품과 야자각 차의 비율과 불활성 기체 유량과 같은 실험변수들을 분석함으로서 수행되었다. 이와 같은 NaOH 화학적 활성화에 의한 2,481 m2/g의 고 비표면적과 2.32 nm의 평균 기공크기를 갖는 활성탄이 얻어졌다. 양극으로 LiMn2O4, LiCoO2와 음극으로 제조된 활성탄을 사용하여 하이브리드 커패시터의 전기화학적 성능을 조사하였다. LiPF6, TEABF4의 유기 전해질을 사용한 하이브리드 커패시터의 전기화학적 거동은 정전류 충방전, 순환 전류 전압법, 사이클과 누설전류 테스트에 의해 특성화 되었다. LiMn2O4/AC 전극을 사용한 하이브리드 커패시터가 다른 하이브리드 시스템 보다 더 좋은 충방전 성능을 보였으며, 출력밀도 1,448 W/kg와 131 Wh/kg의 고 에너지 밀도를 전달할 수 있다.
Active carbons with high specific surface area and micro pore structure were prepared from the coconut shell char using the chemical activation method of NaOH. The preparation process has been optimized through the analysis of experimental variables such as activating chemical agents to char ratio and the flow rate of gas during carbonization. The active carbons with the surface area (2,481m2/g) and mean pore size (2.32 nm) were obtained by chemical activation with NaOH. The electrochemical performances of hybrid capacitor were investigated using LiMn2O4, LiCoO2 as the positive electrode and prepared active carbon as the negative electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes (LiPF6, TEABF4) were characterized by constant current charge/discharge, cyclic voltammetry, cycle and leakage tests. The hybrid capacitor using LiMn2O4/AC electrodes had better capacitance than other hybrid systems and was able to deliver a specific energy as high as 131 Wh/kg at a specific power of 1,448 W/kg.
[References]
  1. Kandalkar SG, Lee HM, Seo SH, Lee K, Kim CK, Korean J. Chem. Eng., 28(6), 1464, 2011
  2. Lee SW, Park DK, Lee JK, Ju JB, Sohn TW, Korean J. Chem. Eng., 18(3), 371, 2001
  3. Tanahashi I, Yoshida A, Nishino A, J. Electrochem.Soc., 137, 3052, 1990
  4. Tanahashi I, Yoshida A, Nishino A, Carbon., 28, 477, 1990
  5. Mitani S, Lee SI, Yoon SH, Korai Y, Mochida I, J. Power Sources, 133(2), 298, 2004
  6. Roh KC, Park JB, Lee CT, Park CW, J. Korean Ind. Eng. Chem., 18(4), 381, 2007
  7. Ohta T, Kim IT, Egashira M, Yoshimoto N, Morita M, J. Power Sources., 198, 408, 2011
  8. Liu Z, Ling L, Qiao W, Liu L, Carbon., 37, 2063, 1999
  9. Ozaki J, Endo N, Ohizumi W, Igarashi K, Nakahara M, Oya A, Carbon., 35, 1031, 1997
  10. Lillo-Rodenas MA, Lozano-Castello D, Cazorla-Amoros A, Linares-Solano, Carbon., 39, 751, 2001
  11. Kang CY, Shin YS, Lee JD, Korean Chem. Eng. Res., 49(1), 10, 2011
  12. Wang YG, Xia YY, Electrochem. Commum., 7, 1138, 2005
  13. Yoon JH, Bang HJ, Prakash J, Sun YK, Mater. Chem. Phys., 110(2-3), 222, 2008
  14. Ma SB, Nam KW, Yoon WS, Yang XQ, Ahn KY, Oh KH, Kim KB, Electrochem. Commun., 9, 2807, 2007
  15. Wang KP, Teng H, Carbon., 44, 3218, 2006
  16. Lee MS, Sin YS, Lee JD, J. Kor. Oil Chem. Soc., 27, 310, 2011
  17. Kwon JS, Yoon YI, Ko JM, Theor. Appl. Chem. Eng., 14, 2857, 2008
  18. Egashira M, Sawada N, Ueda K, Yoshimoto N, Morita M, J. Power Sources, 195(6), 1761, 2010
  19. Du Pasquier A, Huang CC, Spitler T, J. Power Sources, 186(2), 508, 2009
  20. Hu XB, Deng ZH, Suo JS, Pan ZL, J. Power Sources, 187(2), 635, 2009