Issue
Korean Chemical Engineering Research,
Vol.51, No.3, 297-302, 2013
UV/Photocatalysis 시스템을 이용한 EtOH의 분해 및 H2S의 산화
Decomposotion of EtOH and Oxidation of H2S by using UV/Photocatalysis System
악취 유발 물질인 H2S를 처리하기 위한 UV/photocatalysis의 성능 향상에 관한 연구를 수행하였다. 광촉매 물질을 선정하기 위하여 EtOH을 기준물질로 사용하였으며, 광촉매 반응기의 광활성은 광촉매 반응기의 표면에 코팅된 광촉매의 표면특성과 높은 상관성을 나타냄을 확인하였다. PS 광촉매(STS-01)가 코팅된 광촉매 반응기는 기체선속도가 0.01 m/s, 상대습도가 40%의 조건에서 약 80%의 H2S 산화효율을 보였으나, 그 이상의 선속도에서 반응활성은 급격히 감소하였다. 광촉매 반응기의 성능유지를 위하여 백금을 광촉매에 담지하였는데 이는 같은 실험조건에서 95% 이상의 우수한 H2S 전환율을 나타내었다.
Enhancement of photocatalytic activity of UV/photocatalysis was carried out to oxidize the gaseous H2S in a tubular reactor coated with photocatalyst of sol type TiO2. EtOH was used as the standard material to select the photocatalyst, and it was confirmed that the reactor activity was dependent on the coated surface characteristics. The selected photocatalytic reactor, which coated with STS-01, showed about 80% conversion when the gas linear velocity was 0.01 m/s and relative humidity was 40%. However, the conversion level of the reaction decreased significantly with increasing gas linear velocity. Pt was loaded on the photocatalyst to enhance and maintain the performance of the reactor, which enhanced the conversion level of H2S more than 95% under the same experimental condition.
[References]
  1. Lee SJ, Cho IH, Lee HK, Zoh KD, Journal of Korean Society of Environmental Engineers., 24(6), 1071, 2002
  2. Oh KJ, Choi WJ, Lee SS, Lee JJ, Shon BH, Journal of Korean Society of Environmental Engineers., 24(6), 985, 2002
  3. Yang Y, Allen ER, J. Air Waste Manage. Assoc., 44, 863, 1994
  4. Chung YC, Huang CP, Tseng CP, Biotechnol. Prog., 12(6), 773, 1996
  5. Lim KH, Park SW, Lee EJ, Theor. Appl. Chem. Eng., 12, 524, 2006
  6. Asano A, Keisuke O, Kei K, Kenkyu Hokoku - Ehime-Ken Kogyo Gijutsu Senta., 35, 45, 1997
  7. Avila P, Bahamonde A, Blanco J, Sanchez B, Cardona AI, Romero M, Appl. Catal. B: Environ., 17(1-2), 75, 1998
  8. Fu X, Zhang X, Song S, Wang S, Tao M, Gongneng Cailiao., 28(4), 411, 1997
  9. Poon CS, Cheung E, Constr. Build. Mater., 21, 1746, 2007
  10. Kwon TR, Roo WH, Lee CW, Lee WM, Korean Chem. Eng. Res., 43(1), 1, 2005
  11. Dibble LA, Raupp GB, Environ, Sci. Tech., 26, 492, 1992
  12. Hoffmann AJ, Carraway ER, Hofmann MR, Environ. Sci. Tech., 28, 776, 1994
  13. Kormann C, Bahnemann DW, Hofman MR, Environ. Sci. Tech., 25, 494, 1991
  14. In SI, Korean Chem. Eng. Res., 49(5), 505, 2011
  15. Park KM, Kim TY, Kim JG, Cho SY, Korean Chem. Eng. Res., 48(5), 649, 2010
  16. Kwon TR, Roo WH, Lee CW, Lee WM, Korean Chem. Eng. Res., 43(1), 1, 2005
  17. Chen D, Ray AK, Chem. Eng. Sci., 56(4), 1561, 2001
  18. Arai T, Horiguchi M, Yanagida M, Gunji T, Sugihara H, Sayama K, Chem. Commun., 43, 5565, 2008
  19. Yang CC, Yu YH, van der Linden B, Wu JCS, Mul G, J. Am. Chem. Soc., 132(24), 8398, 2010
  20. Carbajo M, Enciso E, Torralvo MJ, Colloids Surf. A: Physicochem. Eng. Asp., 293, 72, 2007
  21. Maira AJ, Yeung KL, Lee CY, Yue PL, Chan CK, J. Catal., 192(1), 185, 2000
  22. Ohno T, Sarukawa K, Tokieda K, Matsumura M, J. Catal., 203(1), 82, 2001
  23. Yang J, Zhang J, Zhu LW, Chen SY, Zhang YM, Tang Y, Zhu YL, Li YW, J. Hazard. Mater., 137(2), 952, 2006
  24. Kubo W, Tarsuma T, J.Mater. Chem., 30, 3104, 2005
  25. Zhan SH, Chen DR, Jiao XL, Tao CH, J. Phys. Chem. B, 110(23), 11199, 2006
  26. Kozlova EA, Lyubina TP, Nasalevich MA, Vorontsov AV, Miller AV, Kaichev VV, Parmon VN, Catal. Commun., 12, 597, 2011
  27. Obee TN, Brown RT, Environ, Sci. Tech., 29, 1223, 1995