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Abstract— Models for rigid and flexible polymers dissolved at low concentration in a dielectric New-

tonian fluid and subjected to shear and electric (or magnetic) fields are developed. The rigid polymers are
taken to be a rigid spheroid with high aspect ratio and the flexible chains are considered as an elastic dumb-
bell with a nonlinear spring constanl. Specific calculation schemes are developed for transient shear and/or
electric fields. Rheo-optical properties such as birefringence and extinction angle are calculated and also

interesting components for stress tensor are predicted.

INTRODUCTION

The coupling of electric (or magnetic) and hydro-
dynamic fields can be found in a number of fields in-
volving colloidal dispersions and polymeric liquids.
The most current examples are processes involving
ink jet printing, and the coating of record media with
magnetic particles. Although the cross-discipline of
electrohydrodynamics [1,2]) has a relatively long his-
torv, it has not enjoyed a great deal of fundamental
research. For polymeric liquids, although electric and
hydrodynamic effects have been extensively studied
separately in the past[3,4], there is a scarcity of reported
research on the electrohydrodynamic response of
these materials [5].

Dynamics of both rigid and flexible macromole-
cules dissolved in a dielectric, Newtonian fluid and
subjected to electric and hydrodynamic fields is con-
sidered in this paper. Mason and coworkers [6] have
considered most questions pertaining to large, non-
Brownian particles at infinite dilution. [keda and co-
workers [7,8] studied the steady state response of rod-
like polymer chains with an assumed permanent di-
pole moment subjected to electrohydrodynamic fields.
As pointed out by Okagawa et al. [6], however, the
assumption employed by Ikeda in [7] that the force on
the macromolecule arises from the electric field within
the molecule is not as realistic as utilizing the electric
field existing outside the macromolecule. This paper
focuses on questions involving the role of Brownian
motion. In addition, transient flow phenomena are
considered and induced dipole moments are assumed.
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The transient behaviors are considered here, which
can be compared with the steady state dynamics in the
previous paper [5]. [n addition, both flexible and rigid
macromolecules are considered. There are practical
advantages in considering the induced dipole moment
due to the fact that it is convenient to utilize oscillating
electric fields in many experiments and such fields are
not sensitive to the permanent dipole moment if the
frequency of oscillation is large enough. Oscillating
fields minimize the effects of Joule heating and elec-
trophoretic migration. In section 2, the convective dif-
fusion equation for rigid macromolecules of high as-
pect ratio is developed. The solution to this equation is
presented in section 3 and applied to the calculation of
birefringence, extinction angle and rheological mate-
rial properties.

In section 4 a theory for flexible polymer chains is
presented. Stockmayer and Baur [9] were among the
first to consider the application of an electric field on
flexible chains with parallel dipole moments and em-
ployed the multibead and spring model of Rouse [10)
and Zimm [11]. For the purposes of this paper, how-
ever, the simple elastic dumbbell model with both
linear and nonlinear spring functions was used (see
reference [4] for a discussion on various mechanical
models for flexible chains).

FOKKER-PLANCK DIFFUSION EQUATION
FOR SLENDER, RIGID SPHEROIDS

Mason and coworkers [2,6] have worked out the
motion of non-Brownian, spheroidal particles sub-
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Fig. 1. Coordinate system and axis of revolution of
an axisymmetric rigid spheroid for the spe-
cific combination of shear and electric fields
considered.

jected to a simple shear flow and simultaneously acted
upon by an electric field of an arbitrary orientation
with respect to the flow axis. In this paper the specific
problem of an electric field, E,. aligned parallel to the
direction of the velocity gradient is considered as pic-
tured in Figure 1. In that case, the equations of motion
of the symmetry axis of a spheroid would be [6]:

. Girt—1) Gf'r
b= —IEFTJT—stq:smM% i 15111 psin2d (1)
. G Gf'r
. ) +=—- sin2
@ ) (r’sin*@+cos*¢) + ] ¢, i2)

Where 8, ¢ are two Euler angles which determine
the orientation of the spheroid as shown in Figure 1. G
is the shear rate and r is the aspect ratio of a spheroidal
macromolecule. The electrohydrodynamic field param-
eter {’is the ratio of electric torque to hydrodynamic
torque as defined in reference [6]. When r>1, this
parameter is the following [6]:
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Here e, is the permittivity of free space, 7, is the
viscosity of suspending Newtonian fluid, and K, is the
dielectric constant of suspending fluid. q is defined as
the ratio of dielectric constant of a macromolecule o
that of the fluid. We shall focus our attention on the
problem of rodlike chains of high aspect ratio. As r
tend to infinity, f’can be shown to have the following
asymptotic form:
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Thus equations (1) and (2) become
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When the Brownian motion is present, it is neces-
sary to introduce an orientation distribution function
¥ (4, ¢ :t) which prescribes the probability that a chain
has a paticular orientation. The normalized diffusion
equation describing the evolution of ¥ is;

gw+ﬂ9,w+fﬂﬂf AT=0. (10

Where f={'8/r. B = G/D, is the dimensionless veloci-
ty gradient and =D is a dimensionless time. Here
D, is the rotational diffusivity of the macromolecule
(4]. The normalization condition for ¥ is the follow-

ing:
ﬁ "aosing [ Tdgw=1 i

The operators &, 2, and A in (10) are:
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The operators £, is due to the shear flow and its
properties are tabulated in reference [4]. The operator
A is the spherical Laplacian which is also discussed in
[4]. Q, is due to the electric field and its properties
with respect to spherical harmonic functions are tabu-
lated in Appendix A.
1. Solution procedure
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We shall seek a solution to equation (10) for time
dependent electric and hydrodynamic fields of the fol-
lowing form:

B=F8: (1) (13

f=f.g, (7). {16)

Where g, and g, are arbitrary, dimensionless func-
tions of z. Furthermore, perturbation solution will be
obtained assuming both £, and f, are less than 1. As
Kim and Fan [12] have shown recently, this manner cf
solution has a finite radius of convergence with respect
to B, and it is expected that this is also true for f,. Ex-
panding ¥ in a series in powers of f, leads to:
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Substituting equation (17) into (10} leads to:
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The zero order solution ¥ is simply the solution
obtained in reference {13] and [14] for the case of no
electric field. Following the procedure in reference
[13], the distribution function is expanded in terms of
the velocity gradient 8, and the following solution is
obtained.
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Here P77 are the associated Legendre functions and
C,, and S,, denote cos m¢e and sin m¢ respectively.
The functions (a,b ;t) in equation (22) are defined as:
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In order to solve the combined hydrodynamic and
electric field problem it is also necessary to define the
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following time-dependent functions:
t
[ a) b t]—f dt/ —at- t') (t/)f dt//efb(kr')gl (t”)

{23b)
Where terms enclosed by () signify integration over
g,(1) instead of g,(t).
2. First order solution
Substituting equation (21) into (19) and (20), the fol-
lowing equations are obtained:
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The results are:
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3. Higher order solution

Second and higher order terms can be obtained
successively, but for simplicity, only pertinent terms to
third order in 8, and {, are listed here,
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Terms up to fourth order can be found in APPENDIX
B.

PROPERTIES OF THE STRESS AND
REFRACTIVE INDEX TENSORS

Once the distribution function is known, the stress
tensor can be constructed through the Giesekus ex-
pression given in Bird [12]. Rheo-optical properties
such as flow birefringence (or dichroism) and extinc-
tion angle can be evaluated through expressions dis-
cussed in reference [15] and [16]. Birefringence A n is
defined as the difference in the principal values by the
real part of the refractive index tensor i the plane or-
thogonal to the propagation axis of the light in a given
experiment. The extinction angle ¥ defines the orien-
tation of the principal axis of the refractive index ten-
sor with respect to a laboratory frame. If the light is
propagating along the z axis the birefringence and ex-
tinction angle are:

An=M (<P;C,>*+<P}I§,>*]'? (28a)

tan 2 y)=<PIS,> /<PIC,> (28b)

The shear and normal stress components of interest
can be shown to be the following [4]:
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As indicated above, the bulk solution properties
are all functions of averages over the distribution func-
tion (as indicated by the angular brackets < >) of
various spherical harmonic functions. Using the or-
thogonality properties of these functions it is straight-

forward to evaluate these averages. The following
sections consider a number of specific cases.

1. Steady state (g, =g,=1)
At steady state, three integrals are required to cal-
culate the material functions and optical properties.

The results are listed below to fourth order in 8, and
f
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The steady shear viscosity can be obtained by (29a)
and it is plotted against the dimensionless shear rate
8, after normalization by its zero field value (the vis-
cosity in the limit of zero shear and electric fields) in
Figure 2a. The viscosity is shear thinning for all values
of the parameter f, which were explored with the rate
of shear thinning increasing with f,. As is apparent
from this figure, the zero-shear-rate viscosity (the in-
tercept in Fig. 2a) increases with increasing with f.
This is easily understood by recognizing that the effect
of the electric field is to align the rods normal to the
flow direction thereby causing a greater energy dis-
sipation. The upper bound on f, for each plot was de-
termined by evaluating the radius of convergence for
the expansion of equation (17} (typically 4). This was
accomplished through examination of the coefficients
for the zero-shear-rate viscosity up to the fourth order
in f,. This is the same procedure as followed in refer-
ence [12] although they evaluated many more terms
for their particular case.

The first normal stress coefficient was also cal-
culated and found to follow trends similar to the shear
viscosity. Plots of this function under steady shear are
found in Fig. 2b. The steady second normal stress coef-
ficient is always zero for all values of f,.

The extinction angle is plotted in Figure 3a. At zero
electric field, the zero shear intercept is at 45° with re-

spect to the flow direction and parallel to the principal
axis of strain in the shear flow. Any finite value of f,

however, causes the zero shear intercept to equal 90°.
Further application of the flow leads to a decrease in
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Fig. 2. (a) Dimensionless steady viscosity, (b) first
normal stress coefficient as function of shear
rate 3, (from the top, f,=4,2,1,0.5,0).

the angle towards a zero value. The birefringence is
plotted in Figure 3b and shows an expected trend as
the electric and hydrodynamic fields are simultaneous-
ly applied. For weak fields, the birefringence increases
as either g, or f, is increased. For large electric fields,
however, increasing the flow strength decreases the
birefringence due to the fact that the two fields tend to
orien: the rods in orthogonal directions.
2. Transient electro-hydrodynamic field (g, =
g2

When g, = g,, the time dependent coefficients in
equations (28) and (29) can be simplified due to the
fact that there is now no difference between [0,(0},1;7]
and [(0),0,1;7]. In the following section, the case of the
simultaneous inception of the electric and flow fields is
examined.
2-1. Simultaneous inception of both fields

The birefringence resulting from the simultaneous
application of electric and hydrodynamic fields is
shown in Figure 4 for 8, = 4. A large overshoot occurs
for sufficiently high flow strength and this overshoot is
enhanced upon the application of an electric field. The
extinction angle for the same value of 8, is plotted in
Figure Sa. At zero time the angle has a value between
the limit of 90° (f,#0) and 45° (f,=0). Figure 5b
sumrnarizes this initial value of the extinction angle as
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Fig. 3. (a) Steady extinction angle, (b) birefringence
of rigid spheroid solution as function of shear
rate £, (from the top, f,=4,2,1,0,5,0).
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Fig. 4. Unsteady birefringence build-up of rigid

spheroid solution during simultaneous sud-

den inception of both shear and electric fields

(8,=4, and frohe top, {,=4,2,1,0,5,0).

a function of both g8, and f,.

The development of stresses following the incep-
tion of flow is also of interest. Enhancement of over-
shoot in the shear viscosity is predicted as f, is increas-
ed as shown in Figure 6. However, the superposition of
an electric field onto a shear field will not induce over-
shoot if overshoot does not exist when f,=0. Figure 6
also indicates that there is a finite jump in the shear
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Fig. 6. Unsteady viscosity development during sim-
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0,0.5,1,2,3,4).

stress at zero time following the inception of flow. The
magnitude of this jump is independent of the value of
f,. The first normal stress coefficient following the in-
ception of flow is plotted in Figure 7. Unlike the shear
stress, the first normal stress differences shows no
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Fig. 7. Unsteady first normal stress coefficient devel-
opment during simultaneous sudden incep-
tion of both shear and electric fields at 8 = 4
(from the top, f, = 4,3,2,1,0.5,0).

AZ

I~

[l

I
F—
X
Y
Fig. 8. The elastic dumbbell model and its coordina-
tes.

finite jump at zero time in the absence of an electric
field. Application of such a field, however, leads to a
substantial instantaneous jump as shown in Figure 7.
Although it is not shown here, the second normal
stress difference also undergoes a finite jump when an
electric field is applied but the steady state value is
unaffected and remains at a value of zero.

KINETIC THEORY FOR FLEXIBLE CHAINS

In this section the elastic dumbbell model [4] pic-
tured in Figure 8 is used to describe flexible polymer
chains subjected to electro-hydrodynamic fields. The de-
velopment of this model proceeds from a force balance
on the two beads making up the dumbbell. The contri-
bution to the force balance equations include the hydro-
dynamic friction, an entropic spring force, a Brownian

Korean J. Ch. E. (Vol. 6, No. 4)
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force araising from the solvent and a force due to the
electric field. Following Stockmayer and Baur [9], we
shall assume that the electric field induces a polariza-
tion of the chain segments which leads to a force on
the beads. Furthermore, we shall make the simpli-
fication that the induced dipoles are oriented parallel
to the chain axis so that the net induced dipole for the
chain is parallel to the end to end vector 1. The elec-
trical force acting on the ends of the dumbbell is then

F=2ge'r. 81

Where the dimensionless tensor g defines the orienta-
tion of the applied electric field. The constant g is de-
fined as

g= 3 (o - a)E} 62

where a, and a, are the induced polarizabilies in ex-
cess of displaced solvent parallel and perpendicular to
the chain axis respectively.

From the force balance equations the following dif-
fusion equation for the probability distribution func-
tion ¥(rt) can be obtained.

OV o Mrv-2p. _2KkT g

or TVML¥- SV KO- S5 viE=0
39

M=G[+ 8¢ B4

{:

Here ¢ is the friction factor of each bead and K(r) is the
spring constant. G [ is the velocity gradient tensor and
it is apparent from equation (33) that the superposition
of an electric field onto a flow field merely causes this
tensor to be replaced with the tensor M. The solution
of equation (33) and the evaluation of bulk solution
properties can therefore proceed in the same manner
as used for purely hydrodynamic problems.

It is useful to make the diffusion equation dimen-
sionless by introducing a length scale L = Na (the con-
tour length of the chain) and a time scale A =LY/
12kTN. Here N is the number of submolecules of
length a making up the chain. The spring constant is
then taken to be 3KTN/L2E(r). For the linear elastic
dumbbell model E(r) is 1, and one commonly used
nonlinear model is the Warner spring, E(r) = 1/(1-r%),
which was used here for calculations. The diffusion
equation is then:

1 .
‘I ?V-;E(r)_r_v']
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The hydrodynamic and electric fields are then char-
acterized by the dimensionless parameters a = AG and
f=4ga/{. One immediate consequence of applying an
electric field is that the “strong flow/weak flow” cri-
terion discussed by Tanner [17] and Olbricht et al.
[18] is altered. This condition defines the state at
which a dramatic extension from the coiled to the st-
retched state occurs. The criterion for the present
model is given by the following inequality:

k*<1/2: weak field, coiled configuration

k*21/2: strong field, stretched configuration
where k" is the largest, positive eigenvalue of («[ +
f/2¢). One would anticipate that for strong fields, it will
be necessary to utilize nonlinear spring functions, E(r)
which preserve the finite extensibility of the dumbbell.

Although calculation were carried out for this mod-
el, the results are all qualitatively similar to those
found for the rigid dumbbell model and are not repro-
duce here. There is, however, a much weaker depend-
ence by the electric field on the overshoot phenomena
in material functions for the elastic dumbbell.

CONCLUSIONS

The simple rigid and elastic dumbbell models can
be used to provide predictions for the response of poly-
meric liquids to simultaneous hydrodynamic and elec-
tric fields. Although this problem has been considered
to a limited extend in the past, the use of electro-hy-
drodynamic field is becoming increasingly important
in applications (e.g. fabrication of flexible mass storage
disks and ink-jet printing). Alternatively, combined
hydrodynamic and electric fiedls can often be used to
offer greater insights into the structure of the polymer
chains themselves (the recent article by van de Ven
[19] considers this point for spheroidal particles), or to
alter the rheology of these materials.
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APPENDIX A. Properties of Operator &,
The operator £, has the following properties.

s 3
QPrCal =2 Z bamre Pramiard Comvap-e (AL)
p=1 g=1

This relationship is true for S, if we switch every C,,
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with S .
The coefficients b's are:
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APPENDIX B. Details of Base Functions

b= (2-n) m+m) n+m-1) n+m-2)
(n+m 3 1_ mo,\)
/2@n-1) 2n+1) (A10)
If m =1, we have different formulars.
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First columns are for C,, and 2nd columns for S, res-
pectively. All indicies should be positive or zero, and
the lower one should be greater than or equal to the
upper one.
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NOMENCLATURE 8 : dimensionless velocity gradient
An : birefringence

D, : rotational diffusivity ¢, : permittivity of free space
f: electrchydrodynamic field parameter ¢ . friction factor
G : shearrate n, : viscosity of suspending Newtonian fluid
K, : dielectric constant of suspending fluid X : extinction angle
K(r) : spring constant v (o, ‘P :t) : orientation distribution function
g ratio of dielectric constant of macromolecule to
that of the suspending fluid REFERENCES
r : aspect ratio of spheroidal molecule
r : end to end vector 1. Mecher, JR. and Taylor, G.I.: Ann. Rev. Fluid
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