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Abstract—Stormer-Numerov approximations of high accuracy were developed for solutions of non-
linear boundary value problems and nonlinear eliiptic partial differential equations. The approximations can
be easily adopted also for parabolic partial differential equations in one and more space dimensions and
feature fourth-order accuracy. For boundary value problems only three nodes are necessary to obtain the
desired fourth order accuracy. The finite difference formula for parabolic partial differential equations can be
readily generalized to a nonequidistant mesh so that automatic regridding in space may be used. The Stomer-
Numerov approximations are important for solution of problems where storage limitations and computer
time expenditure preclude standard second order methods. Because of the fourth order approximations a low
number of mesh points can be used for a majority of chemical engineering problems. The application of
Stormer- Numerov’approximations is illustrated on a number of examples.

INTRODUCTION

The increased use of computational techniques in
studies of dissipative structures has produced a need to
develop reliable and efficient algorithms to deal with a
coupled set of nonlinear ordinary differential equa-
tions (boundary value problem), elliptic and parabolic
differential equations. These problems feature steep
space gradients so that a great number of grid points
must be used to resolve the problem. Frequently we
must solve the problems in two (or three) dimensions.
The use of standard second order methods is preclud-
ed because of enormous number of grid points which
are necessary for resolution. It has been demonstrated
on simple problems several times that high order fi-
nite-difference methods may provide important im-
provements of codes in terms of diminishing the
required number of grid points as well as the computer
time for desired resolution.

The present work represents the study of Stormer-
Numerov finite difference approximation to determine
the feasibility of its use in chemical engineering prob-
lems. A comparison of this method with standard scc-
ond order schema will be also performed.

*Author to whom correspondence should be addressed.
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GENERAL APPLICATION OF STORMER-
NUMEROV APPROXIMATIONS

1. Boundary value problems for ordinary dif-
ferential equations

So far, several techniques have been proposed for
resolution of nonlinear boundary value problems, e.g.
shooting, finite-difference methods combined with
the Newton-Raphson procedure, invariant imbedding,
false transient method, and continuation[1]. Assessing
the relative merits of different methods is not an easy
task. For a number of difficult nonlinear boundary
value problems finite difference methods proved to be
a very reliable tool. The ultimate objective of a finite-
difference scheme is generation of accurate results
using a low number of grid points. Among other things,
in this paper, we try to answer the following question:
What is the best discretization of the given boundary
value problem? What emerges from our investigation
is a promising class of methods which make use of
three nodes and are of fourth order accuracy.

Consider the boundary value problem

ay"+by - f(x, ) =0
subject to linear boundary conditions
aoy(0)+8y 0 =17

(1a)
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a,y()+8.y 1=~ t1b)
Using a padé approximation, we can write [2]

Dy

Yn=| 1 ) ¥n 2)
+ DD
6
” D,.D. .
Vo=l ) ¥, i3)
1+ ‘th D

where Dy, D, and D_ are operators which are defined
in the following way:

Doyn: 517,1 et = Yn) (daj
~1 . , ,
D«-yn“_ F Yns1 = ) (4b;

D . 1 y Ao
- Yn= W Yn= Yn-t) . aC)

In practical calculations, we can set the derivatives
yqand y, to F, and S,, respectively, i.e.:

m=Fn =5, i5)
By substituting Eq. (5) into Egs. (2) and (3) and after
performing the operator operations we have:

Lo y2, 1, 1
6Fn+|+ 3Fn+ 6Fn—1 2h‘)n+1 Yn-1) (6}

S5 1

| .
*Snu + = 6 Se Esnﬂ: ;ﬁ \yn+l—2yn'+'ynf|/ .

n:].,"', A/ (7)
Eq. (1) for a nodal point n reads:
aSn+bFn~ f,=0. n=0, -, N+1 i8)

Evidently Egs. (6(8) represent a (3x3) block tridi-
agonal system of equations. This set of equations can
be simplified after eliminating S, , ,, S,. and S, from
Eq. (7) by using Eq. (8). The modified Eq. (7) reads:
16 4+ L 107
"1 (Fac, P10F0+HFoy) 122 Ui t10 /7

Ffo)= hi Oner=29nt 3n). n=1 - N {9)

Eq. (6) along with Eq. (9) forms a (2x2) block tridi-
agonal system. For a special type of Eq. (1), =0, the
calculation procedure can be further simplified.
Evidently, for this case, we can rewrite Egs. (7) and (8)

in the form:
L ‘frwl +10fn+ fat) % (Jner = 2% T Y00,

=1 N (1)
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Eq. (10) is the classic Stormer-Numerov formula which
has 0(h*) accuracy [3].

The accuracy of the approximations used can be ob-
tained by a Taylor expansion of Eqgs. (6) and (7):

DN O 174
Foa= 80 AR ‘1la;
T S RN 1 .
Sp— = 240 Ayt (11b:

The Stormer-Numerov formula has 0(4%) accuracy, bul
only a tridiagonal system of equations must be solved.
For a case with constant coefficients, Eq. (1) can be
transformed to eliminate the first derivative. Using a
substitution

y= Yexp (- %xJ (12a;

Eq. (1) yields:

Y”—z—-expl—b X+ 'b
a

PY=-gxY) (12b)
This equation does not contain the first derivative and
the classic Stormer-Numerov formula can be applied.
Let us now discuss the different type of boundary con-
ditions.
1-1. Boundary conditions of the first kind

These conditions result from (1b) for 4= 8,=0,
therefore

yi))=7/a, and yili=v/a,. 13

Egs. (61(8) represent (3N+2) equations for (3N+4)
variables (y,, n=1,-N; F,, S,, n=0,---, N+ 1}. The two

missing equations can be easily developed by differen-
tiation of Eq. (6):

é S, 4 ,~ S, r% Zithz—Fo,; 14
1. 2 . , .
’6‘511—1‘* *35n ?’é’\snﬂzQlliz“Fnu—ﬁn/l/'. {15

The resulting set of finite difference equations is de-
scribed by a band (nine diagonal) matrix with some
off-diagonal elernents. Using the transformation, Eq.
(12a), it is necessary to solve only N equations for V¥
variables Y. It should be noticed that this prccedure
yields very precise values of first derivatives at the
boundary, £, and Fy, ,, which are necessary in chemi-
cal engineering calculations to evaluate the flux of
mass or heat. In the standard O(h%) procedures, we
must calculate the first derivatives from asymmetrical
finite-difference formulas which may result in a very
inaccurate value.

1-2. Boundary conditions of the second kind

Boundary conditions of the second kind result
from (1b) for ey=a,=0; 7,=7,=0. Eqgs. (68) and (1b)
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represent (3N +4) equations for (3N +4) variables (y,,
Spn=0,-- N+1;F,n=1,..,N).
1 -3. Boundary condmons of the third kind
Boundary conditions (1b) can be rewritten as
(Zo,Vo'i'ﬂoFo: Yo 116a)
a v B Fvo =7 i16b)
Egs. (6)(8), (14), (15), (16a) and (16b) represent (3N +)
equations for (3N + 6) variables y,,, £, and S, (n=0....,
N+1).
Boundary conditions for Eq. (12b) were developed
by Hildebrandt [3]:

J—h%)%‘% %mLW&+1Hg~¥@ﬁ8&

7o

= ( )
ﬁa 17a)
~ yyt 1- K% 1y, L 8gy.,—3Yg
ﬂ“%m‘z r
+ 1148+ 978441 ) 'hﬂ (17b)

Evidently the tridiagonal structure of the matrix is
violated by the first and last rows. To restore the tridi-
agonal structure the first three and the last three line-
arized equations must be pre-solved by elimination.
After the elimination procedure, the first and last rows
contain only two elements, y,, y;, and yy, Yx, 1, respec-
tively and the standard Thomas algorithm can be
used.
2. Elliptic equations

There are many nonlinear elliptic equations in phys-

ics which feature very steep gradients [4] or space st--

ructurs [5,6]. Numerical resolution of such problems
may represent a very difficult problem. The simplest
approach consists in flooding the space by an equidis-
tant dense grid of mesh points using some standard sec-
ond order approximation. However, even on the fast-
est computers, the computer time may be enormous.
An alternative approach may take advantage of for-
mulas exhibiting high order of accuracy. Difference ap-
proximations to the Poisson equation on a square
mesh have been extensively studied [7-9]. The 9-point
difference approximation to the Poisson equation on a
uniform rectangular mesh developed by Kantorovich
and Krylov [8] four decades ago proved to be a very
important scheme. [n our considerations, we are going
to deal with an elliptic nonlinear Poisson equation

oty | 2%y ,
S+ S —gg =0 &, pED=(-11
852 87]2 g, 9,y §.nl€l
X =11 (18)
vié.p)=c for (&, n)€0D. (19

Consider a uniform mesh with the spacing h. Let
y(gn gl} g(gn Up y:/)
For the dlscretlzatlon of the elliptic equation (18) we
can construct the 0(h) and 0(h%) schemes:

0 R =0y, ~Rg,=0 4j=1 . m 20)

0t :”(157 "4<> +{J },"!i-j*hz ‘;gu + lec)gr,.j]:o.

6j=1 -, m. @21
Here we have introduced the symbols as follows:

v =Y e T Yeas Ve  — 4

929

Wl

and
OVis=Vigr 1 Yes Hoe v T Vi = 4. 23)

The resulting set of nonlinear sparse algebraic equa-
tions can be solved by the Newton-Raphson method.
The matrix generated by the 9-point formula is sym-
metric, block-tridiagonal matrix (each block itself
is a tridiagonal matrix), and is irreducible, weakly
diagonally dominant and positive difinite [9]. Sym-
metric block tridiagonal nature of these systems in-
dicates that fast direct methods such as block cyclic
reduction, fast Fourier transform and tensor product
method [10] can be applied to the 9-point discretiza-
tion.

3. Parabolic equations

A number of methods exist for numerical solution
of parabolic differential equations. Among the vast
variety of methods two have been extensively used in
chemical engineering practice: (1) Crank-Nicolson
technique [11] and (2) orthogonal collocation [12].
These methods work very well for a great deal of sim-
ple and smooth parabolic problems. The current re-
quirements for computational fluid dynamics, reaction
engineering and biomathematics codes for realistic
problems resulted in the impetus for the development
and implementation of higher order finite difference
techniques. The most difficult problems in dealing
with parabolic differential equations are those which
destroy a prior error bounds (shock-like wave fronts
featuring high curvature) or which are stiff. The former
situation occurs for heat and mass transfer problems
associated with strong exothermic reaction [13] or dif-
fusion and autocatalytic reaction [14]. These problems
can also be stiff. For numerical solution of parabolic
partial differential equations, we can also apply the
idea of difference formulas of hgih-order accuracy. The
procedure which we are going to develop in this sec-
tion is the Crank-Nicolson technique featuring tridi-
agonal form and fourth order accuracy.

Korean J. Ch. E. (Vol. 6, No. 3)
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For the sake of simplicity let us consider a simple
quasilinear parabolic equation:

3y 9%

oy _ 2

EYRREY +gx ). 24
We can write this equation in the form:

'y _ 3y _ _ 9y ,

Y ialry glx, y=rlx 5 EYE ). 23

Applying the Stormer-Numerov formula (10) to Eq.
(25) we get:

2
Yner — 2Ynt Yo = % (fTH'l +10fn+fn—1 ) (26

or

— 9. dym-l g‘y_ dkﬂ 1
Yner = 2¥nt Y= 12[( dt +10 dt + dt )

~ (Gne1 +10gnF gnl. n=1,- N @7

Evidently, Eq. (27) is the O(h") representation of
parabolic equations (24). This equation cannot be
integrated directly by explicit methods and we must
presolve Eq. (27) to get the system in an explicit form.
Of course, after presolving this equation the “method of
lines” approach can be used [15). However, we can in-
tegrate Eq. (27) by a trapezoidal rule:

1 i+ i+ NES J J 3
TZ_[()’;H: -2y I+yn—: )+ (}’nu ‘2}’"4’}'4-1)]

h!
=1k (ai =

Yaea 10927 = 1032 +yati — yi, )

2
— g 108 g gh + 10 g,
n=1,--,N (28)

We may notice that Eq. (28) is represented by a set of
algebraic equations having a tridiagonal structure.
This finite-difference approximation is a Crank-Nicol-
son scheme having O(h*, k%) accuracy.

For a 2D-quasilinear parabolic equation

3y _ 9y 2y ., 9
at ac an &Y

the Kantorovich-Krylov formula yields:
_é‘ (4<>+:]) ymm+ i [gﬂ‘m+ '11?<>gn.m;

d
\dt nm

Numerical integration of this expression by a trape-
zoidal formula gives rise to a Crank-Nicolson schema
having O(h*, h*, k) accuracy.

=i +15 <> M.J. 30
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EXAMPLES

In this section the discretization procedures de-
scribed above will be applied to physical problems.
Following type of problems will be considered:

(1) Nonlinear boundary value problem for ordi-
nary differential equations (mass transfer and autocata-
Iytic chemical reaction).

(2) Calculation of limit points (explosion in a 2D
system).

(3) Analysis of Hopf bifurcation points (onset of in-
stability in diffusion-reaction systems).

1. Example 1

For a model reaction suggested by Nicolis and Pri-

gogine [16],

A-X

B+X-Y+D

2X+Y-3X

X-FE

following transport equations can be written:

2

D, d /21 =A (31a)
dz

DxZi( B+ X-XY-A (31b)
2

DLl =x'v-BX B31c)

Fixed boundary conditions are considered:
z=0,2=L; A=A, X=X,, Y=7Y,. 31d)

Following values of the parameters have been used
for calculation:

0,=0.1; D,=0.0016; D;,=0.008
A=2 ; Xo=2; ,=2.3; B=4.6
L=0.4.

For this parameter values seven steady states can
be calculated. The profiles of X are drawn in Fig. 1.
Three steady states are symmetric, four are asym-
metric. The results of calculation are reported in Table
1. The error £ presented in this table is defined as:

E= 10¢ g‘ | X, = Xeerl.

N TE

Here N is the number of grid points and X, is the ref-
erence solution. The solution calculated for h=0.01 (99
internal points) has been considered as a reference
solution. Fig. 2 displays the dependence log £ versus
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4 W L f 14 log h. This figure reveals that the error is 0(h% and
i/ \\ A : \\ 0(hY) for the standard difference schema and lhe
X otV L 2 Stormer-Numerov technique, respectively.
\-// \v," S Based on this table we can notice that the Brand!
00 2 5a 0——___—0._2__——(1_40 multilevel approach [17] can fail if at the beginning of
s the calculation a low number of grid points is used. The
N b IL f —]4 table reveals that for 5 internal points only the brach a
< ' and b can be calculated and either divergence or con-
gl o) ‘.\ o=l 2 vergence to these profiles resulted for profiles for bran-
s N - ches ¢ d e f and g For N=19 and for O(hz) schema
0,0 53 545 53 0‘40 all profiles can be located. From the table it can be in-
' : ferred that 24 internal points for 0(h") scheme yield
a4l ¢ } r g 44 comparable accuracy with 99 points for ){h% pro-
X ~ - - cedure. Since the computer time is proportional to N,
Py \\ = . . /' 2 the improvement in the economy of calculation is by
s b ‘U at least one order of magnitude. Evidently for two di-
0 040 0.2 0.4 mensional problems the improvement is higher by
0 0.2 7 — more than two order of magnitudes.
b d 4 2. Example 2
This example should illustrate the possibility of cal-
X 2 /\,vA i culation of limit points for nonlinear boundary value
\\_/ problems and elliptic equations. For a system of non-
0 - s linear algebraic equations
0 Z— Foi0, uy, uy, -, uyi =0 1=1,2, -, N, 32
Fig. 1. Multiple solutions of nonlinear boundary
value problem given by Egs. (31a{31d). a branching point occurs if:
Table 1. Error E versus N
N Approx. Branch a Branch b Branch ¢ Branch d Branch e Branch f Branch g
99 0(h%) R R R R R R R
0(h2) 13 8 57 10 30 23 33
74 0(h?) 0 0 0 0 0 0 0
0(H?) 23 14 101 17 53 41 60
49 oY 1 0 2 0 0 1 1
0(h?) 52 32 228 40 120 93 136
39 0(hY) 3 0 4 1 2 2 3
0(h?) 83 50 355 63 189 148 214
29 O(h%) 10 2 13 4 6 8 8
0(h?) 152 90 624 115 338 270 389
24 O(hY 22 4 28 8 14 16 17
0(h?) 228 131 896 172 487 396 377
19 0(hY) 60 1 70 22 34 43 45
0(h?) 389 210 1387 271 766 648 944
14 0(h%) 158 38 233 79 115 175 156
0(h?) 639 396 NC 551 1374 1436 1852
9 0(h%) 483 204 CP NC 624 962 717
0(h?) 826 1112 CP NC NC 2567 8182
5 0(hY) 411 2021 CP NC NC NC NC
0(h?) 1062 2953 CpP NC NC NC NC

N=number of internal mesh points
R =reference solution

O=a small number <0.5
CP = no convergence after 50 Newton iterations
NC = convergence to a solution that may not be compared with the reference

Korean J. Ch. E. (Vol. 6, No. 3)
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Fig. 2. Log E versus log h on the branch b.
Fool 10, ty, Uy, o, uy)==det Gib, uy, thy, oo, Uyl
=0, (33
Here G is the Jacobian matrix with the elements
QF I8, uy, v uy, .
g, =t g =1, N, i

ou,
The branching point can be determined from a si-
multaneous solution of Egs. (32) and (33).
(a) Thermal explosion of solid explosives, occurr-
ing in a 2D system, is described by a nonlinear ellip-
tic equation

x,veD=1(-11> 11
subject to boundary conditions
§=0 for (x, yi€aD. (6}

For 8<8* a steady state solution exists while foré>§*
the equation does not possess a solution. The value
5=5"* is referred to as the critical condition of explo-
sion. It can be easily shown that for =8~ a limit point
exists.

For discretization the Kantorovich-Krylov 9-point
0(h") formula has been used. The results of calculation
are reported in Table 2.

(b) Exothermic reaction and diffusion occurring in
a 1D system is described as a nonlinear boundary
value problem.

Table 2. Results for critical conditions for explosion

h o
12 1.6988
The correct value §*=1.702031
1/4 1.70188
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Table 3. Results for ignition and extinction condi-
tions for a catalytic reaction (¥=20, 5=0.4)

Ignition
h g*
1/2 0.13726
The correct value 0*=0.137557
1/4 0.137540
Extinction
h 0*
112 0.07831
The correct value §*=0.0779303
1/4 0.077912
ay S yB =Y
——=8Y expl-"———) 37
dx? P sa-y 4
x=1r1; Y=1. 38)

This equation features, two limit points, i.e. extinc-
tion and ignition conditions exist. For the discretiza-
tion the Stormer-Numerov schema has been used. The
results are reported in Table 3.
3. Example 3

Transient heat conduction, diffusion and exother-
mic first order reaction may be described by a set of
two parabolic differential equations:

9y 9y & .8
Lyzt — T — —exply 7)) i
*ot ~ae' TP 1vasy ¥

20 28 8

L = 1 .

ot~ et é‘yexptH 0/7) d
subject to boundary conditions

E==x1,3y=1 6=0.. 41)

Here y and 4 represent the dimensionless concentra-
tion and temperature, respectively. From the mathe-
matical point of view, the onset of oscillations can be
characterized by so called Hopf bifurcation. The clas-
sical Hopf bifurcation occurs in a smooth automomous
system of ordinary differential equations

%{zf(u, &) 42
when the real parameter & has values near a critical
value 5§=8** at which an isolated steady state solution
u* loses linear stability by virtue of a complex con-
jugated pair of eigenvalues of the Jacobian matrix
I'={8fidu},*. At the Hopf bifurcation point the Jaco-
bian matrix has a pair of pure imaginary eigenvalues.

The Stormer-Numerov scheme was used for discre-
tization of parabolic equations (39+41). For calculation

of the values of the Hopf bifurcation points we used a



Stormer-Numerov Approximation for Numerical Solutions of Ordinary and Partial Differential Equations 171

Table 4. Hopf bifurcation points for parabolic equa-
tions (¥=20, $=0.2 L,,=5.5)

Approximation

Mesh size
0(h?) 0(hY)

1 1.18 1362
1/2 1.386 1.4403
1/3 1.419 1.44363
1/4 1.430 144417
1/5 1.4353 1.44432
1/6 1.4380 1.444366

technique which is described elsewhere [18]. The
results of calculation are reported in Table 4. From this
table it can be inferred that already one internal point
results in two significant digits accuracy. Two internal
points for O(k") discretization scheme yields better ac-
curacy than 6 internal points for 0(h® scheme.
Evidently, the one-point discretization makes it possi-
ble to develop analytical criteria for Hopf bifurcation
(4], as a result the discretization by the Stormer-
Numerov scheme can successfully compete with the
“linearization” [19] and one point collocation [12].

CONCLUSIONS

The application of Stormer-Numerov high order
difference approximations has proved to be a very
reliable procedure for discretization of many chemical
engineering problems described by elliptic or parabol-
ic nonlinear equations. For problems where the pro-
files are smooth enough we can usually use a low
number of points to get accurate results. For elliptic
problems featuring boundary layer character it is wise
to use nonequidistant mesh. The Stormer-Numerov
finite-difference approximations can compete with or-
thogonal collocation approach both in terms of ac-
curacy and simplicity of programming.
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