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AbstractIncipient fault detection and diagnosis for centrifugal chillers is significant for maintaining safe and effec-
tive system operation. Due to the advantages of simple learning algorithm and high generalization capability, the
extreme learning machine (ELM) can identify faults quickly and precisely in comparison to conventional classification
methods such as back propagation neural network (BPNN). This paper reports an effective diagnosis method for
incipient chiller faults with the integration of kernel entropy component analysis (KECA) and voting based ELM
(VELM). KECA was first performed to reduce the dimensionality of the original input data so as to minimize the
model complexity and computational cost. Instead of using a single ELM, multiple independent ELMs were adopted in
VELM, and then the class label could be predicted based on the majority voting method. Using the experimental data
of seven typical faults together with a normal operation, the proposed KECA-VELM fault diagnostic model was
trained and further validated. The results show that a better fault diagnosis performance can be achieved using the
KECA-VELM classifier compared with the conventional BPNN, ELM and VELM based classifiers. The overall average
fault diagnosis accuracy for the faults at the least severity level was reported over 95% based on the proposed method.
Keywords: Operational Safety, Fault Diagnosis, Water Chillers, Extreme Learning Machine, Kernel Entropy Compo-

nent Analysis

INTRODUCTION

Centrifugal chillers are one of the most widely used heating, ven-
tilation and air conditioning (HVAC) systems in buildings. In com-
parison to direct expansion (DX) type A/C systems, water chillers
are more advantageous in large-scale buildings, in terms of a wider
operational range, a higher system efficiency and a better part-load
characteristic. At the end of 2017, nearly five million water chillers
were in service in China [1]. It was reported that nearly 9.2% of
building energy consumption was by space air conditioning (A/C)
in 2016 [2]. However, unexpected chiller faults may emerge after a
long-time system operation. The presence of chiller faults in rou-
tine operation is one of the most significant challenges in building
automation systems, negatively affecting the system reliability and
energy efficiency. Chiller faults have accounted for about 42% of
the service resources and approximately 26% of the repair costs
[3]. Therefore, it is of significance to seasonally detect and diag-
nose the chiller anomalies for the energy saving of buildings.

In view of the knowledge used for formulating diagnostic sys-
tems, the fault detection and diagnosis (FDD) methods can be clas-
sified into three categories: quantitative model-based, qualitative
model-based, and process history based [4,5]. Compared to the first
two groups where a priori knowledge of a process is assumed, only
historical data are required for the third approach, and thus it has

gained a wider application. The process history-based methods
include gray-box models and black-box models. The first one use
first principles to establish the empirical model where its parame-
ters, such as coefficients in the model, are identified from histori-
cal data, such as the state observer based [6] and the Kalman filter
based [7] models. With the increasing complexity of building energy
systems, data-driven approaches have been regarded as promising
for building performance simulation, benchmarking analysis, control
optimization, as well as FDD in buildings [8]. Over the decades,
data-driven approaches have been extensively adopted for FDD of
HVAC systems, including vapor compression refrigeration systems
[9], variable refrigerant flow (VRF) systems [10,11], air handling
units (AHUs) [12,13] and water chillers [14-16].

The data-driven fault diagnosis for HVAC systems can be regarded
as a typical kind of multiclass classification problem, and its repre-
sentative approaches mainly include artificial neural network (ANN)
and support vector machine (SVM). Du et al. [17] proposed a sen-
sor fault diagnosis scheme for variable air volume systems with the
application of wavelet analysis and neural network. Wavelet analy-
sis was adopted for original data processing, and the neural net-
work trained to diagnose the source of fault. Later, a dual neural
network combining basic neural network with auxiliary neural
network was developed by Du et al. [18] for recognizing the anom-
alies in an AHU. Using the dual neural networks, the detection per-
formance was improved as expressed in terms of a lower false alarm
and shorter detection time. To optimize the feature extraction, associ-
ation rule mining algorithm was applied to select the appropriate
features in a VRF system, and a so-called optimized back propaga-
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tion (BP) neural network method was proposed by Guo et al. [11]
for formulating the fault diagnostic system. As a multilayer per-
ceptron, when using the conventional ANN for multiclass classifi-
cation, unexpected problems, such as local minima, slow learning
rate, and risk of over-fitting, may be encountered, leading to poor
fault diagnosis. SVM is another popular classifier widely adopted
for fault diagnosis. Unlike the conventional ANN, SVM first maps
the training data into a high-dimensional space via introducing a
nonlinear feature function and then tries to maximize the separat-
ing margin of two different classes in the feature space and at the
same tine minimizing training errors using conventional optimi-
zation methods [19]. Therefore, SVM has a relatively high general-
ization capability. Liang and Du [20] developed a multi-layer SVM
classifier to diagnose the faults in a single zone HVAC system. Han
et al. [21] proposed a one-against-one multi-class SVM based chiller
fault diagnosis method with its kernel parameters being tuned by
genetic algorithm optimizer. Results showed that significant im-
provement in fault diagnosis performance was achieved for the
faults of refrigerant leak and refrigerant overcharge. Yan et al. [22]
studied a hybrid FDD method for water chillers which incorpo-
rated an auto-regressive model with exogenous variables and SVM.
The FDD performance was compared to that in case of using the
multilayer perceptron neural network classifier, demonstrating the
superiority of the proposed method in terms of a higher prediction
accuracy and lower false alarm rates. As a matter of fact, the train-
ing of SVMs is a quadratic programming, and thus its computa-
tional complexity is usually intensive. Moreover, when using SVM
for multiclass classification, at least two hyperparameters are required
to be specified and optimized, which is not an easy task in practi-
cal applications. Furthermore, another primary challenge in chiller
FDD is the difficulty in timely identifying the faults at their incipi-
ent stages. A lower fault severity level will have less impact on the
system operation, and thus the incipient faults tend to be more
difficult to recognize. For example, the diagnosis accuracy for the
incipient faults of refrigerant over charging and lubricant over charging
was only 48% and 54.3%, respectively, in a recently reported study
[23]. Therefore, more effects should be done to the enhanced fault
diagnosis performance of the incipient chiller faults.

Recently, extreme learning machine (ELM) algorithm for single
hidden layer feedforward neural networks (SLFNs) was proposed
by Huang et al. [24] and has been merged as an efficient learning
algorithm for SLFNs. ELM employs classification by mapping the
input data to a high dimensional space and then transforms the
classification task to a multi-output function regression problem. In
ELM, the input weights and hidden biases are assigned randomly,
the output weights are calculated by Moore-Penrose (MP) general-
ized inverse, and thus the hidden layer needs not be tuned. There-
fore, ELM achieves higher scalability and less computation com-
plexity than the aforementioned algorithms, BP neural network
and SVM [25]. It has been successfully adopted in an extensive
variety of applications, including face recognition [26,27], data pre-
diction [28,29] and FDD [30,31]. Currently, for overcoming the
problems of misclassification for the data near the nonlinear classi-
fication boundary, Cao et al. [32] proposed a voting based ELM
(VELM) algorithm. Instead of using a single ELM training, multi-
ple independent ELM based classifiers are trained simultaneously,

then the final decision is made by the majority voting method.
Therefore, VELM outperforms the conventional ELM with an
enhanced classification performance. However, no studies on chiller
fault diagnosis using ELM can be identified in open literature.
Therefore, one of objectives in the current study is to establish a
VELM algorithm based diagnostic systems for incipient faults in
water chillers.

On the other hand, before performing the classification, data
decomposition is generally required for reducing the modelling com-
plexity and computational cost. In view of the FDD methods used
for HVAC systems, principal component analysis (PCA) is one of
the most widely adopted algorithms [14-16,33-35]. PCA is a lin-
ear data decomposition method preserving maximally the second-
order statistics of the original data, and thus it may not be suitable
for tackling the problems of nonlinear data transformation of water
chillers. Recently, Rényi entropy has been introduced in the tradi-
tional PCA to compute the information carried by the original
data, and a so-called kernel entropy component analysis (KECA)
method was proposed by Jenssen [36]. Unlike PCA, KECA per-
forms data decomposition in a high-dimensional kernel space which
is nonlinearly related to the input data space, and tries to preserve
the maximum Rényi entropy of the original data. Recent studies
have indicated that KECA is a promising tool for nonlinear data
transformation [37,38]. For example, Xia et al. [37] proposed an
effective fault detection method using KECA algorithm for water
chillers. Results showed that a higher fault detection rate could be
acquired in comparison to the traditional PCA, demonstrating the
advantageous of KECA for dimensionality reduction.

Consequently, this paper reports the development of an effective
fault diagnosis method for water chillers with the integration of
KECA and VELM. The paper is organized as follows. First, the
KECA and VELM algorithms are briefly reviewed in Section 2. In
section 3, the structure of the proposed KECA aided VELM based
fault diagnostic system for water chillers is detailed. Section 4 pres-
ents the validation results based on the experimental data from
ASHRAE RP-1043. Finally, the main contributions of the current
study are concluded in Section 5.

METHODS AND PRINCIPLES

1. Kernel Entropy Component Analysis
Given a data set, D: x1, x2, …, xn, its Rényi quadratic entropy

[39] can be estimated as

(1)

where, p(x) is the probability density function generating this data

set. Letting  and introducing a Parzen window
density estimator [40] yields

(2)

Here, K(x, xt|) is the Parzen window, conventionally known as ker-
nel centered at xt.  is the width parameter of the kernel. Applying the
Gaussian or radial basis function, namely, k (xt, xt')=exp(||xtxt'||2/
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22), yields [41],

(3)

where K is the kernel matrix and equals , I the (n×1)
vector of ones. The Renyi entropy estimate, , hence can be
estimated using the available sample fully residing in the elements
of the corresponding kernel matrix, K, which can be eigen-decom-
posed as K=EDET=(ED0.5)(D0.5ET). D is a diagonal matrix storing
the eigenvalues 1, …, n and E is an eigenvector matrix consist-
ing of the corresponding eigenvectors e1, …, en. Thus, the Rényi
entropy estimate can be evaluated as

(4)

(5)

i is the Rényi entropy for each element in Eq. (4). As seen in Eq.
(5), both the eigenvalues and the corresponding eigenvectors con-
tribute to the Rényi entropy estimate. Finally, KECA selects those
eigenvalues and corresponding eigenvectors according to the first s
largest contribution to the entropy estimate, and thus it can be
regarded as an s-dimensional data decomposition: P=K×Es

T.
2. Voting Based Extreme Learning Machine
2-1. Extreme Learning Machine

The ELM for an SLFN is schematically shown in Fig. 1. As an
SLFN, the structure of ELM is similar to that of a conventional
neural network consisting of an input layer, a hidden layer and an
output layer. In ELM, the output weights, β, are calculated by Moore-
penrose (MP) generalized inverse, and thus the hidden layer needs
not be tuned. Given n arbitrary training samples {(xi, ti)}n

i=1, where
xiRd and tiRm, the output of a SLFN with L hidden nodes can
be mathematically expressed as

(6)

O=Hβ (7)

where, β=[β1, β2, …, βL] is the weight vector connecting the hid-
den layer nodes and the output layer nodes. h(∙) is the activation
function, or the feature mapping function. In the current study,

the sigmoid function was selected as the activation function. The
hidden layer output matrix, H, can be evaluated as

(8)

where wi is the weight vector connecting the ith hidden node and
the input nodes, bi is the threshold of the ith hidden node. The ith
column of the hidden layer output matrix, H, is the ith hidden
node output corresponding to the inputs x1, x2, …, xn, while its jth
row is the hidden layer feature mapping corresponding to the jth
input xj.

Consequently, ELM tries to minimize the training error, namely,
||OT||, and the norm of the output weights, which can be expressed
as

Minimize: ||HβT||2 and ||β || (9)

where T=(t1, t2, …, tn) is the target output matrix. In ELM algo-
rithm, its learning parameters, weight wi and bias bi, are randomly
assigned initially, and thus the system represented by Eq. (6) be-
comes a linear one. Consequently, the output weight vector can be
computed by finding the least squares solution of Eq. (6):

β *=H†T (10)

where H† is the Moore-Penrose generalized inverse [42] of the
hidden layer output matrix H. Finally, given a testing sample, xtest,
its classification result can be obtained as

Otest=Hβ * (11)

label(xtest)=arg max fi(xtest), i=1, 2, …, m (12)

2-2. Voting Based Extreme Learning Machine
In the conventional ELM algorithm, due to the stochastic learn-

ing parameters generated, the samples near the nonlinear separa-
tion boundaries may be misclassified, leading to a limited prediction
performance. Therefore, in voting based extreme learning machine
(VELM), instead of using a single ELM, multiple independent ELM
based classifiers are adopted, and the classification results are then
obtained through majority voting [32]. Consequently, the classifi-
cation performance can be further improved.

For easy implementation, the number of hidden nodes and the
activation function adopted for all the individual ELMs in VELM
are the same. Same training samples are used for training all these
individual ELMs, while their learning parameters are initialized
independently. Consequently, by majority voting on the classifica-
tion results predicted by these independent ELMs, the final class
label can be obtained. 

As shown in Fig. 2, given an s testing sample, xtest, there are K
independent networks trained by ELM algorithm in VELM. Based
on these K independent ELMs, their prediction results can be ob-
tained and then stored to a corresponding vector, SK, xtestRm. If the
class label predicted by the kth ELM is i, the value of the corre-
sponding entry i in the vector SK, xtest is increased by one, which can
be expressed as

SK, xtest(i)=SK, xtest(i)+1 (13)
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Fig. 1. Structure of ELM based SLFN.
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Consequently, the final class label for the testing sample, xt, can be
determined through employing the majority voting method

(14)label xtest    org SK, xtest
i  

i 1, …, m 
limmax

Fig. 2. Structure of VELM for multi-classification.

Fig. 3. Structure of the proposed fault diagnostic system for water chillers.

STRUCTURE OF THE PROPOSED FAULT 
DIAGNOSTIC SYSTEM

Through combining the KECA with VELM, the fault diagnos-
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tic system for water chillers can be established. As shown in Fig. 3,
the proposed fault diagnostic system includes two parts: feature
extraction and fault identification. Feature extraction was performed
by KECA, and fault diagnosis was then realized by VELM. In both
parts, there are two processes for the development of the fault diag-
nostic system: the offline model training process and the on-line
fault diagnosis process.
1. Offline Model Training

The offline model training process includes two procedures, one
for feature extraction and the other for fault diagnostic model train-
ing. In the feature extraction part, the input training dataset, Xtrain,
including the normal operating samples and the abnormal ones is
first filtered and normalized by a data pre-processor. Then, the
normalized dataset is nonlinearly mapped onto a high-dimensional
kernel feature space using RBK kernel, and the kernel matrix, K, is
obtained. Third, the kernel matrix, K, is eigen-decomposed in the
kernel feature space by K=EDET. This is followed by computing
the Renyi entropy estimate using Eq. (5). Fourth, through sorting
the Rényi entropy of the dataset in the kernel space, the optimal
principal component (PC) number, s, is determined. Finally, the
data decomposition of the original input dataset can be achieved
by P=KEs

T, and the high-dimensional training dataset, Xtrain, is
transformed to the low-dimensional training dataset, xtrain.

When training the fault diagnostic model using VELM, the num-
bers of independent ELM and hidden node in each ELM, K and
L, are required to be determined first. For kth-ELM, the learning
parameters of L-hidden nodes are then randomly assigned by (wj

k,
bj

k) independently. Third, based on the transformed training data-
set, xtrain, and its corresponding target output dataset, T, the hid-

den layer output matrix, Hk, is obtained according to Eq (8). This
is followed by computing the output weight vector, β k=(Hk)†T.
This training process is not stopped until the output weight vec-
tors for all the individual ELMs are retained, or the training num-
ber, k, reaches the pre-defined number of ELM, K. Finally, the fault
diagnostic model is established, and the obtained output weight vec-
tors for all the individual ELMs are retained for fault identification.
2. Online Fault Diagnosis

In the online fault detection module, the dimensionality of the
testing dataset is initially reduced and then input to the established
fault diagnostic model for further fault identification. As shown in
Fig. 3, the testing dataset is first filtered and normalized using the
previously built data pre-processor. Then it is nonlinearly mapped
onto a high-dimensional kernel feature space using the same RBK
kernel function, and the kernel matrix for the testing dataset, Kt, is
acquired. Third, the dataset in the kernel feature space is projected
onto the dominant subspace constructed by the s principal axes,
and thus the testing dataset is transformed to a low-dimensional
space by Pt=Kt×Es. Fourth, using the obtained output weight vec-
tor, β k, the fault label can be predicted based on the k-th ELM by
Tk

test=Hkβ k. Finally, different types of fault are able to be recog-
nized through majority voting the predicted results of all the indi-
vidual ELMs as indicated by Eq. (14).

VALIDATION OF THE PROPOSED KECA-VELM 
FAULT DIAGNOSIS METHOD FOR CHILLERS

1. Experimental System Descriptions
To validate the proposed fault diagnosis method, the real-time

Fig. 4. Schematic diagram of the experimental centrifugal chiller reported in ASHRAE RP1043.
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operating data of a water-cooled chiller reported in the ASHRAE
Research Project 1043 (RP-1043) [3] were utilized. The experimen-
tal facility is schematically shown in Fig. 4. The 90-ton centrifugal
water chiller was equipped with a shell-and-tube evaporator and a
shell-and-tube condenser. There were five flow paths in the experi-
mental system: chilled water circuit, cooling water circuit, hot water
circuit, the city water supply and the steam water supply. Detailed
descriptions of the experimental facility can be found in the report
ASHRAE RP 1043 [3].

The experimental system was fully instrumented with highly-
precise sensors. 48 operating parameters were directly measured
and then used for evaluating the other 16 operating parameters.
Therefore, there were 64 input features in the proposed fault diag-
nostic system. To generate the operating samples with anomalies,
different types of faults were manually imposed in the water chiller.
The fault types and their corresponding generation methods are
shown in Table 1.

Note that for the seven typical faults, each contains four differ-
ent severity levels, designated by SL1-SL4, corresponding to the
least severe fault to the most severe one. As a matter of fact, in chiller
routine operation, if a certain kind of fault occurs, its severity level
gradually grows with time. Timely identifying the incipient fault is
beneficial for reducing equipment downtime, energy waste, and
maintenance cost. Hence, incipient fault identification is of vital sig-
nificance to prevent serious performance deterioration and ensure
an optimal system operation. A lower fault severity level will have
a less impact on the system operation, and thus the incipient faults
tend to be more difficult to recognize in comparison to the seri-
ous ones [22,23]. Therefore, in the current research, the seven typical
faults at their least severity level together with the normal opera-
tion, totally, eight categories, were considered to examine the pro-
posed KECA-VELM fault diagnosis method.
2. Data Pre-processing

Concerning the outliers and transient data between two steady
states present in the operating samples, a geometrically weighted
variance based filter was adopted to remove these measuring noises.
Assuming a set of data [x1, x2, …, xn], its geometrically weighted
variance can be evaluated as

(15)

where,  is the geometrically weighted average given by

(16)

(17)

where ss is the effective time window length, t the time interval
between measurements. Three key operating variables--chilled water
supply temperature, inlet water temperatures of the evaporator and
condenser--were selected as the indicators of chiller operational
state [14]. Consequently, measuring noises were able to be identi-
fied if the related data went beyond the slop threshold predefined,
and thus could be further removed. The slope threshold and time
window length were set at 0.2 oC and 80 s, respectively. Details of
this filter can be found in the previous study [37]. Moreover, to
ensure all the variables having even contribution, the filtered data
were further normalized in the data pre-processor.
3. Dimensionality Reduction

For minimizing the computational complexity, KECA based
data decomposition was performed to reduce the data dimension-
ality and at the same time preserving as much information as pos-
sible. As mentioned in Section 3.1, the pre-processed data were
projected onto a kernel feature space through nonlinear mapping,
and the kernel matrix K could be evaluated. Dimensionality reduc-
tion hence was then implemented in the high-dimensional kernel
feature space via eigen-decomposing of the kernel matrix K and

sn     
nk xk   xn   2

k0

n


 
 
 


nk

k0

n


xn  

xn     
nk

k0

n
 xk 

nk

k0

n


  
ss

ss   t 
--------------------

Table 1. Fault types and their corresponding generation methods
Fault code Fault type Generation method

0 Normal Normal operation
1 ReduCF Reducing water flow rate entering the condenser
2 ReduEF Reducing water flow rate entering the evaporator
3 ConFoul Plugging tubes of the condenser
4 NonCon Adding nitrogen volume
5 RefLeak Discharging refrigerant weight
6 RefOver Overcharging refrigerant weight
7 ExcsOil Increasing lubricant in charge

Fig. 5. Normalized Renyi entropies for the top 10 principal compo-
nents.
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evaluating its corresponding Renyi entropy.
The normalized Renyi entropies for the top ten principal com-

ponents are shown in Fig. 5. Generally, the optimal number of PC
could be obtained through evaluating the cumulative percent vari-
ance (CPV) of the first s largest Renyi entropies. It was previously
shown that the CPV for the first four PCs (PC1-PC4) could reach
96.36% [37], which was enough for data decomposition. In the
current study, when training the proposed fault diagnostic model,
the number of PC was initially set at 4, and the best diagnosis per-
formance with a reported accuracy of about 90% was achieved.
Furthermore, for the enhanced fault diagnosis performance, the
fault diagnosis accuracy with the different numbers of PC was also
evaluated. As shown in Fig. 6, the fault diagnosis accuracy for both
training and testing datasets improved as increasing the PC num-
ber. When training the fault diagnostic model, the fault diagnosis
accuracy could reach its highest value at 100% based on five PCs.
In terms of the model testing results, the highest fault diagnosis
accuracy was able to be achieved at 95.6% when the PC number
was increased to 9. When further increasing the number of PC,
the fault diagnosis accuracy could not be improved. On the other
hand, a higher dimensionality of the input gave a more computa-
tion complexity. Therefore, for balancing the performance and the
model complexity, the optimal PC number, s, was set at 9. Conse-
quently, the dominant subspace was constructed by the principal
axes corresponding to the top nine largest Renyi entropies, namely,
PC1-PC9, when using the KECA for dimensionality reduction.
4. VELM Parameters Selection

As a typical type of SLFN, the number of hidden layer nodes, L,
is of significance for the performance of the ELM classifier. To deter-
mine the optimum node number, a single ELM with different hid-
den layer nodes was trained and tested based on the experimental
data from ASHRAE RP-1043 without dimensionality reduction.
The test results are shown in Fig. 7. As seen, since the learning
parameters of hidden layer nodes were randomly generated, the
fault diagnosis accuracy fluctuated under different hidden layer
nodes. Whereas the fault diagnosis performance could be remark-
ably improved as increasing the hidden nodes to about 80. The
highest fault diagnosis accuracy could be achieved at 83.7% for a
single ELM with 77 hidden layer nodes. Therefore, the number of
hidden nodes for the three individual ELMs was fixed at 77 in the

current study.
After obtaining the optimum number of hidden layer node for

a single ELM, the number of individual ELM should be further
determined. Therefore, VELM based classifiers with different num-
ber of ELM (i.e., 1, 3, 5, 7, 9) were trained and tested. Considering
the randomness of the initial learning parameters, 50 trials for
each VELM were carried out so that the average and maximum
fault accuracy based on different VELMs could be evaluated. The
results are shown in Fig. 8. As seen, the average and maximum fault
diagnosis accuracy for 50 trials could be improved when the num-
ber of ELM was increased 1 to 3. However, when further increasing
the ELM number, the fault diagnosis performance was degraded
due to the problem of overfitting. Therefore, in the current study,
three ELMs were adopted in the proposed fault diagnostic model.
5. Fault Identification Results

After determining the key parameters of the proposed KECA-
VELM scheme, the fault diagnostic model could be trained and
further tested using the experimental data from ASHRAE RP-1043.
There were totally 640 experimental samples which were separated
into two parts: 480 samples (75% of the total samples) were ran-
domly selected for training the fault diagnostic model, while the
remaining 160 samples (25% of the total samples) were then used
for testing. For the training dataset, 480 samples contained eight
categories, i.e., seven typical faults together with the normal opera-
tion, with each including 60 samples. The testing dataset of 160

Fig. 6. Variation in fault diagnosis accuracy with the increase of PC
number.

Fig. 7. Fault diagnosis accuracy as increasing the hidden layer nodes.

Fig. 8. Fault diagnosis accuracy as increasing the ELM number.
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samples also included eight categories with each containing 20
samples.

To illustrate the effectiveness of the proposed fault diagnosis
method, another three commonly used classifiers, i.e., BP neural
network (BPNN), single ELM and VELM, were also implemented
and their corresponding fault identification results were compared
to that by KECA-VELM. In the BPNN, 121 hidden layer nodes
were selected through trial and error, and the activation functions
for the hidden layer and output layer were hyperbolic tangent
function and sigmoid function, respectively. For the ELM classi-
fier, an SLFN with the same number of hidden layer nodes used
in the KECA-VELM, namely, 77 hidden nodes, was adopted, but
no data decomposition was implemented. In terms of the VELM
based method, same as the proposed method, three individual
ELMs were utilized but the input data were not transformed to a
low-dimensional feature space.

Based on the four established fault diagnostic models, their fault
diagnosis results could be acquired and are shown in Fig. 9. In
addition, for better illustrating the fault diagnosis performance
under these four methods, Fig. 8 gives the results of their corre-
sponding confusion matrixes. It should be pointed out that nor-

mal operation was treated as a special kind of fault in the current
research; thus the fault detection together with fault diagnosis could
be considered as a multi-classification problem. Therefore, the pro-
posed algorithm could be adopted for fault detection. A closer look
at the fault diagnosis results for normal operation (fault code 0),
showed that a lower false alarm rate could be achieved using the
proposed KECA-VELM method. For the BPNN, 7 out of 20 nor-
mal samples were misrecognized as anomalies with a reported false
alarm rate of 35%. In terms of the ELM and VELM based meth-
ods, as shown in Fig. 9(b) and (c), 5 out of 20 and 6 out of 20 nor-
mal samples were incorrectly identified as anomalies. When using
the KECA-VELM method, only one normal sample was falsely iden-
tified and the false alarm rate was remarkably reduced to 5%, de-
monstrating the effectiveness of the proposed method for chiller
fault detection.

It was previously shown that among the seven typical chiller
faults, the faults of ReduCF, RefOver and ExcsOil were relatively
harder to identify as compared to the other four faults, particularly
at their incipient stages [23]. Therefore, taking ExcsOil (fault code
7) as an example, 40% of the testing samples were correctly identi-
fied based on the BPNN based classifier, while 10%, 15%, 30% and

Fig. 9. Fault diagnosis results under different classification methods: (a) BPNN; (b) ELM; (c) VELM; (d) KECA-VELM.
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5% were misclassified as ConFoul (fault code 3), ReduEF (fault
code 2), ReduCF (fault code 1) and Normal (fault code 0), respec-
tively. When using the ELM and VELM methods, both of their fault
diagnosis accuracies for ExcsOil could be significantly improved to
85%. The best classification performance with a reported fault diag-
nosis accuracy of 100% for ExcsOil was achieved when using the
proposed KECA-VELM based fault diagnosis method. 250% im-
provement of fault diagnosis accuracy was realized in comparison
to that of conventional BPNN. With respect to the fault of RefO-
ver (fault code 6), 90% testing samples could be successfully iden-
tified using the KECA-VELM classifier larger than that in the case
of using the other three classifiers. Moreover, the proposed KECA-
VELM classifier was more sensitive to the faults of ReduEF (fault
code 2), ConFoul (fault code 3) and ExcsOil (fault code 7), and all
their corresponding fault samples could be correctly diagnosed.

Fig. 10 shows the fault diagnosis results as expressed in terms of
the confusion matrixes. As seen, the fault diagnosis accuracy of
KECA-VELM for all the typical faults except NonCon (fault code
4) could be significantly improved as compared to the other three
methods. The degradation of fault diagnosis performance for Non-
Con may be because the relevant information that was sensitive to
this fault may have been lost when performing the KECA based
data decomposition. Although 90% of NonCon samples could be
successfully identified using the KECA-VELM classifier, smaller
than that in the case of using VELM classifier, it was acceptable for

practical applications. In summary, the overall average fault diag-
nosis accuracy for the four classifiers was 64.3% (BPNN), 83.8%
(ELM), 88.1% (VELM) and 95.6% (KECA-VELM), respectively.
The KECA-VELM based chiller fault diagnosis method outper-
formed the other three methods by about 48.7%, 14.1% and 8.5%,
respectively. The best classification performance as expressed in
terms of the highest fault diagnosis accuracy could be achieved
using the proposed fault diagnosis method. Therefore the KECA
aided VELM based method can be adopted as a powerful classi-
fier for realizing the fault detection and diagnosis of water chillers.

DISCUSSION

The improvement of fault diagnosis performance for the pro-
posed KECA-VELM method is due to the following aspects. In
comparison to the conventional BPNN based classifier using the
gradient-descent based learning algorithm, the learning parame-
ters of hidden nodes for ELM are randomly assigned and indepen-
dent of training samples. As a tuning free algorithm, the risk of local
minima and over-fitting, which may suffer in the traditional BPNN,
can be significantly reduced when using the ELM algorithm for
multi-class classification. Consequently, a better generalization per-
formance can be obtained. Furthermore, instead of a single ELM,
through performing multiple independent ELM training and inte-
grating with the majority voting method, the problem of misclassi-

Fig. 10. Confusion matrixes for the fault diagnosis results: (a) BPNN; (b) ELM; (c) VELM; (d) KECA-VELM.
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fication for the samples near the nonlinear classification boundary
could be addressed. Hence, VELM based classifier outperformed
the traditional ELM. Moreover, by carrying out the KECA based
data decomposition before performing classification, the computa-
tion cost could be minimized and at the same time most redun-
dant information could be filtered out. Therefore, with the aid of
KECA decomposition technique, a better fault diagnosis perfor-
mance could be acquired.

On the other hand, the fault diagnosis results aforementioned
were obtained using the experimental data from ASHRAE RP-1043
without feature selection. As a matter of fact, proper feature selec-
tion can improve FDD performance, while a poor one may nega-
tively influence its performance. In chiller FDD, 16 out of 64 variables
were generally selected for further dimensionality reduction [14].
However, the features selected may be different with the variation
of FDD method. For example, instead of 16, eight variables were
selected when performing SVDD based method for fault detec-
tion [15]. Wang et al. [16] selected nine variables as input features,
while Huang et al. [23] used ten variables for associative classifier
based fault diagnostic model development. In this regard, more
efforts will be made to examine the proposed method with feature
selection in the near future. It is our belief that the fault diagnosis
performance could be improved with the integration of KECA
and VELM after performing an appropriate feature selection.

CONCLUSIONS

This paper reports the development of an effective fault diagno-
sis method for water chillers with the integration of KECA and
VELM. A KECA based data decomposition scheme which tried
to preserve the maximum Rényi entropy of the original data was
performed to reduce the model complexity and computational
cost. VELM classifier with three independent ELM and 77 hid-
den nodes in each ELM was then developed for fault identification.

The experimental data of seven typical faults together with the
normal operation from ASHRAE RP 1043 were employed to train
and test the proposed KECA-VELM fault diagnosis method. In
comparison to another three fault diagnosis methods, i.e. BPNN,
ELM and VELM, the best performance could be achieved using
the proposed method. Main conclusions are summarized as fol-
lows:

1. In terms of the normal operation, the reported false alarm rate
based on KECA-VELM method was only 5% smaller than that on
BPNN (30%), ELM (20%) and VELM (30%) methods.

2. The KECA-VELM was quite sensitive to the faults of ReduEF,
ConFoul and ExcsOil, and 100% fault samples could be correctly
identified for these three faults. Although the proposed classifier was
less sensitive to the faults of NonCon and RefOver, their fault diagno-
sis accuracy of 90% could be accepted in practical application.

3. The overall average fault diagnosis accuracy for the proposed
KECA-VELM classifier was 95.6%, much larger than the BPNN clas-
sifier (64.3%), ELM classifier (83.8%) and VELM classifier (88.1%).

In short, it is concluded that the proposed KECA-VELM algo-
rithm can be an effective technique for both fault detection and
fault diagnosis. On the other hand, the limitation of the current
study is that no feature selection is included in the proposed fault

diagnostic model. Therefore, further studies will be carried out to
examine the feasibility of the proposed fault diagnosis method with
a proper feature selection.

ACKNOWLEDGEMENTS

The financial supports for the Natural Science Foundation of
Zhejiang Province (Project No. LQ19E060007 and No. LY20F030010)
and The Science and Technology Project of Zhejiang Province
(Project No. LGG21F030009) are gratefully acknowledged.

NOMENCLATURE

H2 : Rényi quadratic entropy [bit]
sn : geometrically weighted variance
b : threshold of hidden node
t : time interval between measurements [s]
K(∙) : kernel function
p(∙) : probability density function
h(∙) : activation function
 : eigenvalue
 : kernel width
 : element Rényi entropy
ss : time window length [s]
x : a sample vector
w : weight vector connecting the hidden nodes and the input

nodes
β : weight vector connecting the hidden nodes and the output

nodes
e : eigenvector
K : kernel matrix
I : vector of ones
D : diagonal matrix storing the eigenvalues
E : eigenvector matrix
H : hidden layer output matrix
H† : Moore-Penrose generalized inverse of H
O : output matrix
T : target output matrix

Abbreviations
A/C : air conditioning
AHU : air handling unit
ANN : artificial neural network
BPNN : back propagation neural network
CPV : cumulative percent variance [%]
DX : direct expansion
ELM : extreme learning machine
FDD : fault detection and diagnosis
HVAC : heating, ventilation and air conditioning
KECA : kernel entropy component analysis
PC : principal component
PCA : principal component analysis
SL : severity level
SLFN : single hidden layer feedforward neural network
SVM : support vector machine
VELM : voting based extreme learning machine
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VRF : variable refrigerant flow
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