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Abstract—Model predictive control (MPC) is widely accepted as a generic multivariable controller with constraint
handling. More recently, MPC has been extended to nonlinear model predictive control (NMPC) in order to realize
high-performance control of highly nonlinear processes. In particular, NMPC allows incorporation of detailed process
models (validated by off-line analysis) and also integrates with on-line optimization strategies consistent with higher-
level tasks, such as scheduling and planning. NMPC for tracking and so-called “economic” stage costs has been devel-
oped, and fundamental stability and robustness properties of NMPC have been analyzed. This perspective provides an
overview of NMPC concepts and approaches, as well as the underlying optimization strategies that support the solu-
tion strategies. In addition, three challenging process case studies are presented to demonstrate the effectiveness of

NMPC.
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INTRODUCTION

Today’s chemical processes are challenged by highly competi-
tive market forces and tight operating constraints that demand on-
line optimization of dynamic process systems. This can be ob-
served in batch processes that require optimal operating recipes,
and maintenance of high performance in the face of process dis-
turbances and model mismatch. In addition, continuous processes
undergo a number of dynamic changes, including slow degrada-
tion of performance, transitions due to product grade changes,
operation of cyclic processes and management of upsets and tran-
sients. Recent advances in large-scale optimization algorithms and
modeling strategies are key enablers to address these challenges for
dynamic optimization.

In addition to the availability of dynamic system models and
powerful solution strategies for off-line optimization, nonlinear
model predictive control (NMPC) has become a powerful mecha-
nism for on-line optimization. This is due to its ability to incorpo-
rate nonlinear dynamic models, often driven by first principles,
perform multi-variable optimization, satisfy input and state con-
straints and perform in a robustly stable manner. Moreover, dynamic
optimization models can be extended to link operating decisions
to off-line decisions and also to integrate and coordinate the oper-
ations of multiple process systems.

For the operation of complex, integrated process systems, the
impact of nonlinear models extends conventional MPC beyond
mere regulation at a setpoint. Instead, NMPC can follow dynamic
trajectories accurately and enforce complex recipes for batch and
continuous processes. In addition, to estimate model states and
parameters from process measurements, moving horizon estima-
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Fig. 1. Corporate-wide decision hierarchy.

tion (MHE) with first principle models leads to a straightforward
optimization strategy to validate plant behavior, assess observabil-
ity of states and parameters from process data, and confirm model
suitability through statistical inference.

NMPC also serves as a vehicle that allows the integration with
on-line optimization strategies, consistent with higher level tasks
such as scheduling and planning operations, as shown in Fig. 1.
Key properties for the realization of this decision hierarchy are 1)
feasible realizations must be transferred from the top down, and
equally important, 2) accurate performance potential must be
reflected from the bottom up. Through the integration of RTO
and MPC models, NMPC can be viewed as the enabling element
that incorporates nonlinear dynamic models into a comprehen-
sive real-time optimization strategy [1].

Advanced optimization concepts and algorithms are the key
enablers to recognize the benefits of integrated process operations
[2]. First, nonlinear optimization formulations are needed to pro-
vide reliable and robust solutions, and ensure asymptotic and robust
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stability properties. Second, time critical solutions of NMPC and
MHE subproblems are essential for on-line implementation and
avoidance of computational feedback delays. Finally, for practical
deployment, these solution strategies must be implemented within
a comprehensive optimization modeling framework that leads to
transparent incorporation of nonlinear process models, and allows
seamless interactions with optimization, sensitivity, plant simula-
tion and data management.

This study summarizes recent efforts along these directions. The
next section introduces the formulation of NMPC problems that
satisfy requirements for nominal and robust stability. The third sec-
tion develops well-posed NMPC formulations and properties of the
optimization problem as well as stability properties. In the fourth
section we extend these formulations and properties to develop fast
NMPC strategies with sensitivity-based NLP solutions that couple
off-line optimization with fast on-line updates. The fifth section pres-
ents an optimization modeling framework for NMPC and MHE
problems, while the sixth section presents three NMPC compre-
hensive case studies that highlight the concepts in the previous sec-
tions. Finally, the last section summarizes the paper and provides
future research directions.

ON-LINE DYNAMIC OPTIMIZATION

For the plant model we consider the differential-algebraic equa-
tion (DAE) system in the following semi-explicit form:

% =F(x(t), y(t), u(t), w(t)), x(0)=x, @
0=G(x(t), y(t), u(t), w(t))

where x(t) e R™, y(t) eR?, u(t) e R™ and w(t) e R™ are the differ-
ential states, algebraic states, controls and disturbance signals,
respectively. We assume that the DAE system (1) is index-1 so that
the algebraic equations can be solved for y in terms of (x, u, w).
For the digital implementation, we consider the inputs (u, w) as
zero-order holds at t;, (u(k), w(k)), and implicitly solve (1) between
t, and t,,, as:

x(k+1)=x(k)+ J‘Zm F(x, y(x, u(k), w(k)), u(k), w(k))dt #)]

where we define time steps t; with integers k>0. This leads to the
discrete-time nonlinear dynamic plant with uncertainty:

x(k+1) =f(x(k), u(k), w(k))
=f(x(k), u(k)) +f,(x(k), w(k)). ®3)

We define the mapping f: R™""—R™ with {0, 0)=0, which rep-
resents the nominal model. The term f; R™™*"™—R™ is used to
describe modeling errors, estimation errors and disturbances. We
assume that f{(-, -) and f(,, -) are Lipschitz continuous with respect
to their arguments, and that the noise w(k) is drawn from a bounded
set 7

In addition to the dynamic model (3), key elements for online
dynamic optimization include the choice of objective function, which
is defined in terms of stage costs yAx, u): R —NR at t;. These stage
costs are either tracking functions, ie., deviation from a setpoint,
or economic functions, ie., performance, cost, profit or yield.
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We assume that the states and controls are restricted to the
domains X and U, respectively. The set U is compact and contains
the origin, while X is closed and contains the origin in its interior.

Given the (estimated) state x(k) we consider the standard NMPC
controller (see [3]), defined by the following parametric nonlinear
programming problem (NLP):

N-1
IGx(0) :=min #(z,)+ 3 1z, v) (42
s.t. z,,=1(z, v}) 1=0,...N-1 (4b)
zy=x(k) (4¢)
zeX,velU, zyeX, (4d)

where 7, v, are the predicted state and control variables at time / in
the horizon.

For NMPC applications, the dynamic optimization problem is
formulated over a time horizon of length N. For batch processes,
this problem is solved at each time step over a finite, shrinking
horizon with terminal properties at the end of the horizon. Con-
tinuous processes are often posed as infinite horizon problems.
However, to make them tractable for nonlinear systems, a moving
horizon window of length N is formulated with terminal con-
straints, i.e., x(k+N) e X; with the terminal set X;cX. In addition,
we add a terminal cost denoted by ¥/(°) : RW*—NR. Both stage and
terminal costs are assumed to be Lipschitz continuous in their
arguments.

In problem (4) N is assumed to be sufficiently long and #(zy)
is sufficiently large so that zyeX; holds for the solution of (4). As
shown in [4,5], the X} constraint can even be omitted in (4) under
these conditions. Alternately, terminal regions can also be calcu-
lated and imposed, based on concepts in [6]. Moreover, Griffith et
al. [7] calculate X;and determine N adaptively; this approach leads
to an inactive terminal constraint, with zyeX; in the interior of
the terminal region. Moreover, as developed in [6-8], constructive
methods are available to determine #() and X,

After solving Problem (4) the control action is extracted from
the optimal trajectory {Zg, ..., Z, Voy --.» V1) as U(K)=v;. At the
next time step, the plant evolves as in (3) and we shift the time
sequence one step forward, k=k+1, obtain the next state estimate
x(k+1) and solve the next NMPC problem (4). This recursive strat-
egy gives rise to the feedback law; u(k)=x(x(k)) with (") : R*—
R™ and system (3) becomes:

x(k+1) =f(x(k), x(x(K)), w(k))
= f(x(K), x(x(k))) +{,(x(k), w(k)) ©)

We refer to the above strategy as ideal NMPC (iNMPC), where
the on-line calculation time and its influence on delayed control
injection are neglected. Correspondingly we denote the feedback
law of iNMPC as u*“(k)=x"(x(k)). INMPC has well-known stabil-
ity properties (see [3,9]), which we review in the third section.
State Estimation for NMPC

Because NMPC strategies require knowledge of all of the plant
state variables x(k), the estimation of these states from the plant
measurements y(k) is essential. A number of formulations can be
used for this task, including embedded observers and nonlinear
extensions of Kalman filters [10]. In particular, moving horizon
estimation (MHE) provides a consistent coupling to NMPC, be-
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cause it relies on an optimization formulation that can use the same
dynamic models to estimate sequences of states, parameters and
disturbances from plant measurements, up to the current sampling
time.

While a comprehensive review of state estimation is beyond the
scope of this article, a brief summary of updates is provided here.
Recent results in robustness and stability of MHE have been devel-
oped in [3,11], and a number of efficient solution strategies have
been developed in [12-14].

For state estimation the MHE problem uses A/ measurement
vectors in the past y(k-A); ..., y(k) to find the most likely sequence
of state estimates X_y, ..., X Based on maximum likelihood prin-
ciples, the resulting MHE optimization problem is defined as fol-
lows:

x“iigk ¢—A(X—4N1k> X_Ak-1> H—Mk—l)

TH-1

0
+ 3 (k) =) 'R et ) - hexg)

< T 1
+ 2 WikQ; Wik (62)
Py
8-t Xpp = Xy ) + Xy Wi (6b)
wieW, le {(-N,-N+1, ..., -1} (60)

where @ () is the arrival cost, x sy, and /2y, are the prior
state estimate and its covariance, R; and Q; are the measurement
noise and disturbance covariance matrices and wy, is the process
disturbance. By solving (6) the most likely sequence of estimated
disturbances and states is determined for the data set and prior
estimates. Also, the current state of the plant is determined from
MHE (e, x(k) : =Xy). Note that only a finite data window of
length A is used for this problem. Therefore, an arrival cost @
(-) summarizes all previous data before the current horizon win-
dow k—\V.

Based on the formulation of (6), the on-line implementation of
coupled MHE-NMPC is shown in Fig. 2. At time t; problem (6) is
solved to determine x(k) and problem (4) is solved, using x(k) to
determine u(k), which is injected into the plant. At the next time
step t,; the MHE and NMPC subproblems are updated and the
optimization cycle repeats. Further information on the formula-
tion and solution strategies for MHE problems can be found in
[3,15,16].

Current
Time ,~ ©
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Fig. 2. Nonlinear model-based estimation and control: Coupled MHE
and NMPC.

NONLINEAR PROGRAMMING ELEMENTS AND
PROPERTIES FOR NMPC

The solution of problem (4) is time critical for on-line imple-
mentation. As a result, careful attention must be paid to formulat-
ing NLPs that can be solved efficiently and reliably at each time
step. Moreover, since problem (4) is a parametric problem that
depends on changes in data from the plant, it is essential that this
problem be well-posed with well-characterized solutions.
Elements of NLP Formulations

The NMPC (4) and MHE (6) formulations can incorporate the
dynamic model (3) in a number of ways. To form this system, the
DAE (1) needs to be solved from t; to t;,, through an appropriate,
discretization strategy of high accuracy (high order) and numeri-
cal stability. General DAE solvers can be classified into two types
[17].

- Single-step discretization (e.g, Runge-Kutta (R-K) methods).
High order implicit R-K methods are widely used and have A-sta-
ble properties, which are useful for stiff systems. Moreover, as self-
starting methods they do not require backward interpolation and
easily handle discontinuous input profiles (u(k), w(k)) accurately.

- Linear Multi-Step discretizations (e.g, Adams methods and Back-
ward Difference Formulae (BDF)). Implemented as predictor-cor-
rector methods of high order, LMS must be initialized by single
step methods, and only BDF methods are reliable for stift sys-
tems. To solve initial value problems (IVPs), LMS methods are
generally faster than R-K methods, but because they require back-
ward interpolation, discontinuous input profiles (u(k), w(k)) will
require frequent restarting.

The choice of discretization methods strongly impacts the solu-
tion strategy for (4). The sequential (or nested) approach with an
embedded initial value (IV) DAE solver is easy to implement and
leads to a smaller optimization problem. However, with many deci-
sion variables, calculation of gradients through direct or adjoint
sensitivity becomes expensive, and convergence noise from the IV
solver also propagates to the gradients; second derivatives are rarely
calculated due to the increased computational cost. Moreover,
dynamic systems with open-loop instabilities may lead to failure of
the IV solver.

In contrast, a full, R-K type discretization of (1) (e.g,, orthogo-
nal collocation on finite elements) leads to a high order representa-
tion for (3), and a large, sparse optimization problem (4). With this
approach, first, and even second, derivatives for (4) can be evalu-
ated through automatic differentiation and are much cheaper to
calculate. The fully discretized formulation of (4) allows a simulta-
neous strategy for solution of the dynamic system along with the
optimization problem. Moreover, such an approach has the same
dichotomy property as boundary value solvers, which can handle
open-loop instability reliably and efficiently. On the other hand,
the simultaneous (or full discretization) approach requires a large-
scale NLP solver for efficient performance. An illustration of the
structure of the sequential and simultaneous approaches is pre-
sented in Fig. 3.

To solve the NMPC and MHE problems, NLP solvers can be
classified as follows.

- Derivative free optimization algorithms (e.g, genetic algorithms,

Korean J. Chem. Eng.(Vol. 38, No. 7)
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Optimization
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p] lu(t) s.t.g(x)<0
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G(x,y,u,w, t) =0

Fig. 3. Structure of sequential and simultaneous approaches for
dynamic optimization.

simulated annealing particle swarm, pattern searches [18]) require
no derivatives and are primarily designed for unconstrained prob-
lems. While they are easy to apply, especially with sequential ap-
proaches, they become very expensive for optimization problems
with more than about 100 variables, and are not suited for large
NMPC problems.

- Active set strategies such as successive quadratic programming
(SQP) and reduced gradient methods (eg, GRG, CONOPT, [2])
allow simultaneous minimization and constraint satisfaction. They
have superlinear convergence properties and work well for moder-
ately sized NLPs (>100 decision variables).

- Barrier methods with exact Hessians and sparse Newton meth-
ods that solve the optimality conditions directly (eg, IPOPT, KNITRO,
LOQO, [19]) allow full exploitation of the problem structure, have
quadratic convergence and can handle very large NLPs (>1,000,000
variables).

- A byproduct of the barrier method leads to the sensitivity of
nearby optimal solutions, at virtually no cost, even for very large
NLPs. As described in sections 4 and 5, sSIPOPT and k_aug are
recent implementations of this approach.

More information on NLP solvers for dynamic optimization
problems can be found in [2,20].

Existence, Uniqueness and Robustness of NLP Solutions

In a classic paper [21] three examples are presented and ana-
lyzed to show that NMPC, as formulated in (4), is not robust to
data perturbations, because the NLP does not have feasible solu-
tions for some realizations of the input data x(k), w(k). More
recently, it was shown in [22] that these failures are due to lack of
regularity conditions in the NLP formulation, and suitable modifi-
cations to problem (4) can overcome them. Motivated by these
studies, this section presents sufficient conditions for existence,
uniqueness and robustness of NLP solutions, which are essential
for the realization of stable and robust NMPC.

To analyze the stability properties of model predictive control,
the Lyapunov function is directly related to the objective function
in (4). Asymptotic and robust stability within this framework relies
on satisfaction of boundedness and descent properties of the Lya-
punov function, as well as recursive feasibility for the sequence of
NLP subproblems (4). These properties require that (4) be well-
posed, with solutions that are uniformly continuous with respect
to the problem input data, (e.g., wrt x(k)). This property is essen-
tial to ensure that any bounded input leads to a bounded solution
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(z v;) of (4).

Moreover, differentiability of the solution of (4), particularly for
u(k) (:=v,) wrt x(k), leads to fast sensitivity-based strategies for on-
line NMPC computations. As a result, careful formulation of (4) is
essential to satisfy boundedness, continuity and differentiability
properties, which lead to stable and robust NMPC strategies.

By rewriting Problem (4), with x=(zy; ..., Zy, Vo, ..., V1) and
p=x(k) as:
rriin #(x; p), s.t. c(x; p)=0, g(x; p)<0, 7)

we characterize its solution as a Karush-Kuhn-Tucker (KKT)
point, which satisfies the following conditions for (7).

Definition 1 (KKT, [23]) The KKT conditions for Problem (7)
are given by:

Vé(x)+Ve(x)A+Vg(xHv=0 8)
c(x")=0, 0<vLg(x")<0

for some multipliers (4, 1), where X" is a KKT point'. We also
define /=g@x)+c(x)" A+g(x)" v as the Lagrange function of (7).
A constraint qualification (CQ) is required so that a KKT point
is necessary for a local minimizer of (7). For Problem (7) the fol-
lowing CQ is widely invoked.
Definition 2 (LICQ, [23]) The linear independence constraint
qualification (LICQ) holds at x" when the gradient vectors

Ve(x'; p) and Vgi(x"; p); j €] where J= {jlgi(x"; p)=0} ©)

are linearly independent. LICQ also implies that the multipliers (4,
V) are unique.

To develop a sufficient condition for local optimality, we define
the strong second-order condition (SSOSC), which requires posi-
tive definiteness of the reduced Hessian of ~/ as follows.

Definition 3 (SSOSC, [24]) The KKT point at x* with multipli-
ers A and vis a strict local optimum if the following strong sec-
ond-order sufficient conditions (SSOSC) hold at x":

qQ'V,, 7(x*, A, v p)q>0 forall q=0 (10)
such that

Ve, (x'; p)iqu, i=1,...,n,
ng(x*; p) q=0, for v>0,j€]. (11)

Note that by adding ||x—x'|[}, to the objective in (7), where W
is a positive definite weighting matrix, the KKT conditions of (7)
are unchanged and (x", 4, V) remains a KKT point. Moreover, by
defining the matrix Z as a basis of the nullspace of strongly active
constraint gradients (11) and choosing W, with sufficiently large
eigenvalues for Z'WZ, then SSOSC can always be satisfied at x"
(In fact, adding such a term is an automatic regularization feature
in the IPOPT solver.).

For solutions of (7) that satisfy LICQ and SSOSC, Lipschitz
continuity of x"(p) can be guaranteed by the strong regularity theo-
rem due to [24], who treated the KKT conditions as generalized
equations. To ensure differentiability of x"(p) with respect to p, we
consider the following definition and theorem.

Definition 4 (Strict Complementarity (SC), [25]) At a KKT

! Note the convention {Ve(x)};=0c;/0x; for row i and column j.
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point of (7) (x, 4, V), the strict complementarity condition (SC) is
defined by v—g(x’; p)>0 for each je].

At the solution of (7), the following theorem provides the foun-
dation for sensitivity-based NMPC.

Theorem 1 [25] Let x"(p) be a KKT point that satisfies (8), and
assume that SC, LICQ and SSOSC hold at x". Further let the func-
tions @ ¢, g be at least (+1 times differentiable in x and ¢ times dif-
ferentiable in p. (We assume />2.) Then

- X is an isolated minimizer, and the associated multipliers A and
v are unique.

- for p in a neighborhood of p, the set of active constraints remains
unchanged,

- for p in a neighborhood of p, there exists an (times differentia-
ble function s(p)=[x"(p)", A( )" Up)'], that corresponds to a locally
unique minimum for (7).

More general results on Lipschitz continuity of the solution of
(7) can be derived under the following assumptions.

Definition 5 (MFCQ, [23]) For Problem (7), the Mangasarian-
Fromovitz constraint qualification (MFCQ) holds at the optimal
point x'(p) if and only if a) Ve(x'; p) is linearly independent, and
b) there exists a vector q such that

* * T .
Ve(x ;p)Tq=O, Vgi(x’;p) q<0 je]. (12)

MEFCQ implies that the set of KKT multipliers is a bounded convex
polytope [26]. Another useful constraint qualification is given as:

Definition 6 (CRCQ, [27]) For Problem (7), the constant rank
constraint qualification (CRCQ) holds at (x; p,), when all subsets
of the active constraint gradients Vg(x; p) je] and Vc(x; p) retain
constant rank for all points in a neighborhood of (x"; py).

Finally, if MFCQ holds at a KKT point but not LICQ, the mul-
tipliers (4, v) are bounded but no longer unique, and a more gen-
eral second order condition is needed.

Definition 7 (GSSOSC, [28]) The generalized strong second-
order sufficient condition (GSSOSC) holds at x* when SSOSC holds
for all KKT multipliers (4, 1) that satisfy the KKT conditions of (7).

MFCQ and GSSOSC at KKT points are the weakest conditions
under which a perturbed solution of (7) is locally unique and x(p)
is Lipschitz continuous [29]. On the other hand, since the active
sets may be nonunique, we cannot expect x (p) to be differentia-
ble. Instead with MFCQ, GSSOSC and CRCQ, directional deriva-
tives for x'(p) can be calculated with a particular QP formulation
[28]. These properties facilitate a path following algorithm [30,31]
that allows x"(p) to be computed through a continuation strategy
in p. This algorithm, and related approaches, are sufficient to obtain
sensitivity updates in an NMPC context.

NMPC Problem Reformulation

To exploit the properties of NLP solutions and sensitivity, we
strengthen our assumptions on the dynamic model and objective
function in (4), and assume that f (x, u), y(x, u) and #(x, u) have
Lipschitz continuous second derivatives with respect to their argu-
ments. As detailed below; we also assume N sufficiently long and
H(zy) sufficiently large, so that zye X holds in the nominal case
(see [4,5]).

Moreover, we relax X and X, with 4 penalty terms to develop a
more robust modification of (4). Without loss of generality X, X,
and U can be represented by simple upper and lower bounds, and

we write X, X; as inequalities g(z)<0 and g(zy)<0, respectively.
This leads to the following reformulation of (4):

N-1 N
In(x(R)) = min - Pzy)+ 3, iz, vl)+§pff 1 (13)

z, v &
s.t. 2= f(z, v)), I=0, ..., N-1
zy=x(k)
g(z)<&, £20;1=0, ...,N
v,eU,1=0,..,N-1

where & is a penalty variable vector and 1=[1, 1, ..., 1]~ This leads
to a soft constrained problem for which the NLP always has a fea-
sible solution. Moreover, for the equality constraints, we note that
the Jacobian with respect to z, is block lower triangular, with iden-
tity matrices on the diagonal. Hence, the equality constraint gradi-
ents contain a nonsingular basis matrix, and are linearly independent.
Therefore, it is straightforward to show that MFCQ always holds
at the solution of (13) (see [31]), and because the inequalities are
simple bounds, CRCQ is also satisfied. Under these conditions the
multipliers of (13) are bounded. Moreover, GSSOSC is also straight-
forward to satisfy through addition of a sufficiently large quadratic
regularization term. These terms are compatible with tracking stage
costs as well as economic stage costs [31].

With MFCQ, CRCQ and GSSOSC satisfied, selecting p larger
than a finite threshold, p>p, will drive & to zero, where p is the
dual norm of the multipliers at the solution of Problem (4). If
&=0, then the solution of (13) is identical to the solution of (4),
and nominal stability properties with (13) are identical to those of
(4). Finally, since a solution with &>0 for arbitrarily large p implies
that Problem (4) is locally infeasible, we assume that a finite p can
be found as long as Problem (4) is well-posed.

The above properties ensure that the solution of (13) is Lip-
schitz continuous (and therefore uniformly continuous) for all
perturbations of p=x(k). This is required for nominal and robust
stability properties described below. Moreover, differentiability of
the solution can be obtained through inexact solutions of (13), via
barrier formulations and Theorem 1. Hence, the barrier (or inte-
rior point) approach provides continuous and difterential perturbed
solutions of (13) with respect to the initial state and disturbances.

Interior-Point NLPs

To explore continuity and sensitivity properties of Problem (13),
we rewrite (7) slightly as:

min,, (X p), s.t. c(x; p)=0, g(x; p)+r=0,1=0 (14)

With interior-point solvers, the inequality constraints of problem
(14) are handled implicitly by adding barrier terms to the objec-
tive function,

min @(x; p)— ,ui ln(r(j)), (15a)
=1

s.t. c(x;p)=0, g(x; p)+r=0 (15b)
where ¥ denotes the j* component of slack variable vector r. Solv-
ing (15) for the sequence of 1/'—0, with 1=0, 1, 2, ..., o0, leads to
solution of (14). As shown in [32], convergence of solutions of
(15) to (14) has been proved under GSSOSC and MFCQ.

For a given barrier parameter value z, IPOPT [33] solves the
primal-dual optimality conditions of barrier problems (15) directly,

Korean J. Chem. Eng.(Vol. 38, No. 7)
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Vé(x; p)+Ve(x; p)A+Vgx; p)v=0 (16a)
<(x; p)=0 (16b)

g(x; p)+r=0 (16¢)

Rv=u1, (16d)

where R=diag(r) and 1=[1, 1, ..., 1]~ To solve this system of non-
linear equations, IPOPT uses an exact Newton method; at the ith
Newton iteration, the search direction is computed by lineariza-
tion of the KKT conditions (16),

W, AS|A% 0 | Ax, VL(x; 4 Vi p)

A 0 [0 0] A%L|__ c(x; p) 17)
Ag,-T 0]0 I|Ay g(x;p)+r

0 O0]|R, V,| Ar R,v—ul

where A% : =Vc(x; p), A% : =Vg(x; p) and W,e R™ is the Hessian
of the Lagrange function, ~(x, 4, V=(x)+c(x) A+ (g(x)+r)Tv.
After solving a sequence of barrier problems for 10, the solver
returns the solution s*” (p)=[x"" 2*" v"", r*"] for Problem (14).
Stability Properties of Ideal NMPC

Based on discrete Lyapunov concepts, the nominal and robust
stability results for the iNMPC controller, u“=x"(x) [9,34] obtained
from the solution of (13), can be summarized as follows.

Definition 8 (Comparison Functions) A function o : R,—>R,
is of class .#if it is continuous, strictly increasing, and o(0)=0. A
function o : R,—R, is of class . % 'if it is a . ~function and lim,_,.,
ofs)=c. A function As, k) : R, xZ,—>R, is of class ./ /if, for
each k>0, A+, k) is a . #function, and, for each s>0, A, -) is non-
increasing and limy_,,, A, k)=0.

Assumption 2 (Nominal Stability Assumptions of INMPC)

1. The terminal penalty /), satisfies #(z)>0, Vz e X\{0},

2. There exists a local control law u=xj(z) defined on X; such
that f (z, K(z))eX; VzeX; and Hf(z, x(2)))—- H(2)<-w(z, K(2),
vzeX,

3. The optimal stage cost w(x, u)=y(x, x{(x)) satisfies o,(|x|)<
w(x, w)<a(|x|) where () and () are . /functions.

The nominal stability property for iNMPC is given by the fol-
lowing theorem.

Theorem 3 (Nominal Stability of INMPC, [3]) Consider the mov-
ing horizon problem (13) and associated control law u=u", that sat-
isfles Assumption 2. Then, Ju(x) from (13) is a Lyapunov function and
the closed-loop system is asymptotically stable.

From the proof of this theorem, asymptotic stability is obtained
through a sufficient reduction of the Lyapunov function so that the
sequence of states x(k) attracts to the zero setpoint. On the other
hand, the robust input-to-state stability (ISS) property allows an
additional term related to |w| in the difference of Lyapunov func-
tions. In this case, the sequence of states x(k) attracts only to a
neighborhood related to |w|, around the setpoint. For the analysis
of robust stability properties of iNMPC ISS conditions [9,35] are
defined by:

Definition 9 (Input-to-State Stability)

1. The system (3) is ISS in X if there exists a .~/ function 3
and a . ~function ysuch that for all w in the bounded set 7%

[x(k)|< B(x(0)], k) + fIwl), Yk>0, Vx(0) e X (18)
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2. A function V() is called an ISS-Lyapunov function for sys-
tem (3) if there exist a set X, . 7 functions &;, o, &, 0, Vx€X,
Vwe 7% and o([x))<SVE)<a(|x|) and V(f (x u, w)-V(x)<—
)+ of w)

If X is a robustly invariant set for system (3) and V() is an ISS-
Lyapunov function for this system, then the resulting system is ISS
in X [69].

For the iNMPC controller, we recognize that with X (k+1)=
f(x(k), u(k)), there exists a future mismatch x(k+1)—Xx (k+1)=f;(x(k),
w(k)) at the next time step, giving rise to two different problems
with optimal costs Jy(X (k+1)) and Jy(x(k+1)), respectively. We
define the mismatch term, gx(k+1)) : =Jyx(k+1))—Jx(X (k+1))
and from Theorem 1, there exists a local positive Lipschitz con-
stant L; such that Vx € X, e(x(k+1))<L|f;(x(k), w(k))|.

We make the following assumptions and establish robust stabil-
ity of the INMPC controller from the following theorem.

Assumption 4 (Robust Stability Assumptions)

1. The solution s'(p) in Problem (14) satisfies LICQ, SOSC and
SC. From Theorem 1, the objective function and s'(p) are therefore
continuous and differentiable with respect to p and the resulting feed-
back law, derived from s"(p), can be represented as u=x{(x).

2. falx, w) is Lipschitz with respect to its arguments so that [fy(x,
0)|<ay|x|), where a|x|) is a . Zfunction.

Theorem 5 (Robust ISS Stability of iNMPC [9], [35]) Under

Assumptions 2 and 4 with (|| )_<f’7 ay(|x) and 1€(0, 1), the cost
]

function Jy(x) obtained from the solution of (13) is an ISS-Lyapunov
function and the resulting closed-loop system is ISS stable.

ON-LINE NMPC STRATEGIES AND STABILITY
PROPERTIES

To enable fast on-line solution of (14) for NMPC, we consider
the sensitivity of the NLP solution of (14) with respect to the data
p. Here, the optimal primal and dual variables can be treated as
implicit functions of p. For a sufficiently small 1>0, the KKT con-
ditions (16) can be expressed as the equations ¢(s"(p); p)=0 and
we denote K'(py) as the Jacobian of ¢(s’(p); p) with respect to s”.

To compute approximate solutions around a nominal solution
s"(po), we note that when LICQ and SSOSC are satisfied at the
solution of (15), Theorem 1 holds. Therefore, application of the
implicit function theorem to (16) at s"(p,) leads to:

K*(Po)g—s - 02x(p) p) 19)
P o |
5" (Po)> o
and first-order estimates of neighboring solutions are obtained from:
* * 65* ! 2
s'(p)=s (Po)+a—p(P—Po)+O(|P—Po| )+0() (20)
s(p)=s"(p )+as—*T(p—p) @
0. ap 0.

where 3(p) is an approximate solution of s"(p) and we assume that
4 is small enough that the O(z) term is negligible. From continu-
ity and differentiability of the optimal solution vector, there exists a
positive Lipschitz constant L, such that,
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[3(p)—s"(P)| <L, |p—pol”. 22)

and a first order difference approximation As(p)=3(p)—s(p,) can
be obtained from:

K’ (po)As(p) == (5" (Po); P)- (23)
Also, for the step length 7 [0, 1], the quantity

§=5"(py) + 7As(p) 249
has the property:

T
S

-5 <0~ 9%

(P—po)l+LIp—pol" (25)
This result will be used in a heuristic strategy, called clipping, de-
scribed below.

Active Set Changes

When (p—p,) induces a change in the active constraint set at the
solution of (14), #”<0 or P?<0 with 7=1, and the KKT condi-
tions are violated. Moreover, tracking s’(p) becomes nonsmooth,
the linearization (23) is invalid and Theorem 1 no longer holds.
Nevertheless, GSSOSC, MFCQ and CRCQ in (14) still lead to Lip-
schitz continuity of s'(p) as well as directional differentiability of
x'(p) along (p—p,). To deal with this case, path-following algo-
rithms have been developed in [30,31,36] to track x"(p) with respect
to p. These methods provide a rigorous treatment of NLP sensitiv-
ity, but are more expensive than the simple update (23).

A cheap alternative to path-following, called “clipping in the first
interval,’ perturbs the solution only up to the active set change, using
(24) with 7<1. The clipping strategy chooses the largest value of
7e(0, 1] so that the correction for u(k+1)(=v,+7Av,) €U, since
feasibility of the soft constrained formulation (13) only requires
v;€U. Therefore, clipping ensures that the perturbed control vari-

State 2 State & Control

x(k+1) x(k), u(k) 1

Predict-state

xk.”k: (x(k)’ u(k))

- Jz
On-line Predicted solution
- NMPC Solve NLP
Sensitivity let: — NMPClx,, )

4p =x(k+1) Xk

l

NLP sensitivity
NMPC(4p)

l Set control
u(k+1)

Fig. 4. Sketch of advanced step NMPC for N,=1 [1]. Having (x(k),
u(k) predict x, and solve Problem (4) in background [2].
Wait until x(k+1) arrives [3]. Apply a fast correction to v, from
(4) using the sensitivity update (23) to determine u(k+1). Set
k:=k+1 and repeat.

able value, u(k) remains within its bounds but at the expense of a
higher disturbance error. Because no additional computational cost
is required beyond (23), clipping is incorporated within advanced
step NMPC, which is developed and analyzed in the following sec-
tion. Additional discussion of these strategies can be found in [31].
The Advanced-step Approach

The above NLP and sensitivity formulations comprise the off-line
and on-line components, respectively, of advanced step NMPC
strategies shown in Fig. 4. The advanced step approach is rooted
in [37], which divides the NMPC computation into two phases,
an off-line phase that solves the NMPC problem for the desired
control, based on predicted states, and an on-line phase that cor-
rects the desired control based on updated states (or estimates),
and injects the control into the plant. With this approach, the only
computational delay in determining the control is due to the sen-
sitivity correction, which is usually a tiny fraction of the time to
solve Problem (4).

At time t, we use the current estimate x(k) and control u(k) to
predict the future state at t;,, where N, time steps are needed to
solve (13) in background. Using the predicted state x(k+N,) we
begin execution of Problem (13) at t;,. From solution of (13) we
obtain the KKT matrix K*. Once the actual state (or estimate)
x(k+N,) becomes available, we compute a sequence of fast back-
solves with K" to obtain the control action u(k+j), j=1, ...N,. Con-
sequently, the proposed framework for the advanced-multistep
NMPC strategy, with clipping to ensure u(k+j) €U, can be sum-
marized as follows.

In background, between t, and t.,y:

1. Use (z, v;) from the previous NMPC solution to predict the
future state through X (k+j)=f(x(k+j—1), u(k+j—1)), j=1, ..., N..
Set (pe=)zy=X (k+N,) and solve the predicted form of Problem
(13).

2. At the solution s*(p,), retain factors of K'(py).

On-line, at t,,; j=1, ..., N

1. Obtain the state estimate x(k+j) and set p=x(k+j). For N,=1,
compute the sensitivity step As(p) from (23), or from a Schur-
complement extension to (23) for N;>1 (see [38]). Extract the
appropriate element of As(p), called Av, which corresponds to the
perturbed control variable at /=0.

(a) Calculate ¥, ,=v;,+Av;;: Note that elements of vi, at
strongly active bounds have zero perturbations.

b) I 7., €U set 7=1.

(c) Else, find the largest value of 7€[0, 1] such that u(k+j)
(=vi +Av, ) eU.

2. Set u(k+j):v’f_l+rAvj_leU and return to the background
phase with k :=k+N..

Note that in the nominal case, where f;(x, w)=0 and As(p)=0,
both asNMPC and iNMPC produce identical control actions, e.g,
u“(k+1)=u"(k+1). More details on advanced step NMPC can be
found in [39]. Moreover, stability and robustness properties of the
advanced step strategies have been analyzed in [22] for N,=1 and
in [38] for N,>1; these are summarized next.

Stability Properties of Advanced Step NMPC

Building on the robust stability properties of Ideal NMPC, the
robustness properties of the asNMPC controller also need to con-
sider the effect of the approximation due to NLP sensitivity. The

Korean J. Chem. Eng.(Vol. 38, No. 7)
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forward simulation X (k+1)=f(x(k), u(k)) predicts the future state
at t;,, but the plant will evolve with uncertain dynamics generat-
ing x(k+1). Moreover, we need to distinguish between iNMPC
using u“(k) and asNMPC, which generates u“(k)=x"(x(k)). To
interpret this difference we consider the related problem:

(5000, 6000 : = min #z,)-+ px(19, 619) + lz Wz V)

s.t. z,,=1(z;, v)) 1=0, ...N-1 (26)
zy=f(x(k), a(k)), v,e U

This problem has an equivalent solution to Problem (4) and we
consider J(x, &) as our candidate ISS Lyapunov function. We define
JA(x(k) : =] (x(k), u(K)), J(x(K)) : =] (x(k), u“(k)), and also J(x (K))
: =J(x (k), T“(K)), where u“(k) and u“(k) are determined as
t(k)e U in (26). For the next time step, we define the following
residuals as:

g (x(k+1)) : =] (x(k+1)) -] “(R(k+1)) (27a)
Eux(k1)) 1 =] (x(k+1)) ] “(x(k-+1)) (27b)

where & accounts for the model mismatch while ¢, accounts for
approximation errors introduced by NLP sensitivity. From (25)
and Theorem 1 we have positive Lipschitz constants L, L, L,, and
L such that Vx eX,

£,(x(k+1) <LJx(k+1) - X(k+1)| <L [£,(x(K), w(k))|
£, (x(k+1)) <L (Ju“(k+1)—u“(k+1)|)
SL(1- DL, + Ly |f4(x(k), w))]) - |[f4(x(k), w(k))|

Note that for =1 (i.e,, without clipping) &, is only O(|£;]").

By comparing the successive costs J“(x(k)) and J*(x(k+1)), we
arrive at the ISS property shown in [22] for N;=1 and in [38] for
N>1.

Theorem 6 (Robust Stability of asNMPC) Given Assumptions 2
and 4 with .7 functions ay(|x|) and ay(|x|) that satisfy og(|x))<
ney (/L. whete Lu=(1+Lo+Ly(0(X)+2LiWyas)s W)\ SW

x(k), u(k), XrNer 11 T-Nlk-1 1
2 :l arssEEnEn dEEEEEEEEEEEEEEES
Measurement H Predict
Yk+1) : measurement
: X, S xe(k), u(k)
3 E )@~/M = h(xk~ﬂd
Online Predicted solution =
MHE :
Sensitivity let: - Solve NLP

ap =yt 1) Y.,

!

NLP sensitivity
MHE(4p)

E MHE(.Vk»I\A’ leN\k-I’ H

I'—NV\'-I):
P Y

Prior-covariance
computation

J, Set estimated-state

x(k+1) =%, Store for Arrival Cost

Fig. 5. Sketch of advanced step MHE for N,=1 [1]. Having (x(k),
u(k) predict y;,, and solve Problem (6) in background [2].
Wait until y(k+1) arrives [3]. Apply a fast correction to X,
from (6) using the sensitivity update (23) to determine the
estimated state x(k+1). Set k : =k+1 and repeat.
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and 1 e(0, 1). Then the cost function J*(x) obtained from the solu-
tion of (26) with G=u" is an ISS-Lyapunov function and the result-
ing closed-loop system is ISS stable.

Advanced Step Features for MHE

As with NMPC, MHE can also be reformulated using the sen-
sitivity computations in (23). As shown in Fig. 5, future output
measurements are predicted from the DAE model, and the MHE
problem (6) is solved in background within N; steps. Once the
actual measurements are obtained, sensitivity updates to the back-
ground MHE solution provide new state estimates that are used
for NMPC. Detailed formulations of advanced step MHE are pre-
sented in [13] for N;=1 and in [40] for N;>1. A demonstration of
advanced step MHE is provided in Section 6.1.

Moreover, the MHE formulation (6) can be modified to deal
with gross errors and outliers in the output measurements. In this
case the quadratic stage costs in (6) are modified by using the
method of M-estimators (e.g, Huber or Hampl estimators) that
put less weight on measurements with high residuals. Such an
approach was developed, analyzed and demonstrated in [41] and
leads to less biased estimates.

Terminal Conditions

As seen in the Section 3, terminal costs ¥(zy) and terminal
regions X, are essential components to guarantee the asymptotic
and ISS stability for NMPC. In the terminal region we assume
there exists a stabilizing controller that takes zy to zero as [,
with a terminal cost bounded by ¥(zy). A descent property of the
terminal controller is stated in Assumption 2 and directly applied
in Theorems 3, 5 and 6. As shown in [4,5], a sufficiently long hori-
zon N and sufficiently large terminal cost in problem (4) ensure
that zy will lie in the terminal region. On the other hand, finding
these quantities is case dependent, may require considerable off-line
tuning and can lead to higher computational costs for the controller.

Over the past decade, a number of strategies [6,42-44] have
been developed to determine suitable X;and #(x). Typical calcu-
lation approaches derive a controller, u=—Kx, such as an LQG regula-
tor, for the linearized process model at the setpoint z=0 and a
terminal cost ¥(x)=x" (P)x can be calculated from the Ricatti equa-
tion. The error due to this linearization is given by:

¢ (x)=|f(x, - Kx)— Ax+BKx|

and a terminal region X, is determined where all xe X; satisfy the
descent property:

fix, —Kx)" (P) fx, —Kx)—x" (P)x<—gfx]”.

Using a suitable error bound ¢'(x), X, can be found through global
solution of a nonconvex optimization problem. In [7,8], {(x) is given
by M|x|’, with fitted parameters M, >0, which leads to a construc-
tive terminal region, xe {|x| ec}cX; with ¢ calculated in closed
form.

This terminal region allows the introduction of adaptive hori-
zons that can expand or contract based on behavior of Lyapunov
functions calculated from the NMPC controller. Here the adap-
tive horizon is estimated at the next time step by using advanced
step NMPC predictions along with a safety margin. As shown in
[7], this adaptive horizon approach is able to achieve significant
reduction in average computation time, with the same performance
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as fixed horizon NMPC.
Economic NMPC

In most NMPC applications the stage costs are tracking func-
tions that measure deviations of the state variables from a desired set-
point or trajectory. In Assumption 2, these costs are bounded by
functions to ensure asymptotic and ISS stability.

While the extension of the NMPC controller to economic stage
costs (based on profit, operating or some other performance mea-
sure) is straightforward, these economic stage costs are generally
not .~ functions and therefore do not satisfy the stability assump-
tions. As a result, advanced formulations of the NLP subproblem
are required to realize stability and robustness properties. As shown
in [45], a dissipativity property can be used to establish the stability
for eNMPC. However, it is generally difficult to characterize dissi-
pative systems in the context of Problem (4). Instead, sufficient condi-
tions for dissipativity include NLP reformulations with so-called
rotated stage costs that need to be strongly dual [46] or strongly
convex [31]. Most economic stage costs do not satisty these condi-
tions, although they can be satisfied with regularized stage costs, e.g,,

l//mnd(zb Vl): l//a(zb Vl) +p l//"(ZI) Vl) (28)

where v (z, v)=|z—2|[o+|[vi—V'||} is the tracking stage cost and
(', v') is the steady state optimum for the economic stage cost.
Regularization strategies have been proposed in [31,47,48]. These
studies develop approaches that ensure that reformulated stage
costs /"™ are . //functions, and that both nominal and robust sta-
bility can be proved. However, these approaches (called eNMPC-
reg) may be conservative, especially for large-scale problems. An
alternate eNMPC strategy (called eNMPC-sc) was recently devel-
oped based on direct incorporation of stability constraints based on
tracking functions [49], ie.,

J (x(10)-J" (x(k— 1)<~ 5y (x(k—1), u(k—1)) (29)

where the constant o€ (0, 1] and

()= ¥ (zy) + lz W (2 v).

A case study that compares these approaches is presented in Sec-
tion 6.2.
Robust, Multistage NMPC

ISS holds for the soft constrained NLP (13), but to ensure satis-
faction of hard constraints, the optimization formulation should be
extended to incorporate uncertainty directly within the NLP frame-
work. For this, we consider a slight modification to the dynamic
system (3):

x(k+1) =f(x(k), u(k), d(k)) (30)

where d(k) eR™ represents the plant uncertainty within the con-
tinuous uncertainty set I, and can include w(k), model uncertainty
and other input disturbances. Discretization of delD is typically
done of the form (d(y’}, d(;), d{y’)) for the maximum, nominal
and minimum values of each element (i) in vector d at stage L.
This discretization facilitates a multi-model extension of (4) that
provides worst case performance measures [50-52]. In this ap-
proach, a single optimal control profile is determined while the con-
straints are imposed over N,; model scenarios, each correspond-

ing to a different realization of the uncertain parameters. This leads
to the following multimodel open-loop optimal control problem
(mmOCP) formulation:

min max  ¢(x)) 31)
% j=1, ..., Ny
j=1, iy Ny 120, ..., N
up, 1=0, ..., N-1

s.t. x|, =f(x), u, d)),
Vje{l, ..., Ny}, Vie{o, ..
X=x(0), Vje {1, ..., N,}
gi(x) <0,
Vje{l,...,Ny}, VIe{0,...,N}, Vie],
weU,Vie{0,...,N-1}.

LN-1}

For this worst-case realization each of the N, scenarios is selected
at an extreme vertex d/ of the uncertain parameter (along with any
other critical values that correspond to the worst case). Also, the
nominal open-loop optimal control problem can be obtained as a
special case of (31) with N,=1 with d'=d""". Problem (31) can
also be solved in a moving horizon framework as an extension to
problem (4). However, by capturing the uncertainties and main-
taining feasibility with a single, common control profile, this multi-
model formulation may lead to very conservative performance.

Less conservative multi-stage NMPC formulations have been
proposed, based on concepts of stochastic programming [53-55].
While these formulations are more expensive to solve, they ensure
constraint satisfaction and lead to significantly better performance.
Discretizing each element d;, ; with maximum, nominal and mini-
mum values leads to the scenario tree in Fig. 6, with separate con-
trols for each branch. The resulting optimization problem at t, with
the current state x, is formulated as follows.

N-1

min ¥ w{m &)+ 3 o, dbj (520)

LV ceC —f

st zy,,=f(z], vj, d}) 1=0,...,N-1 (32b)
zf)zxk’ , (32¢)
vi=v; {(c,c)|zj=27} (32d)
zeX,vieU, zye Xp djeD (32e)
Ve, c'eC (32f)

where C is the set of all scenarios, @, is the weight for each sce-
nario, and zj, v, dj represent the vectors of state variables, control
variables and uncertain parameters at stage / and scenario c. The
objective function in (32a) is the weighted sum of stage costs across
all the scenarios. Eq. (32d) represents non-anticipativity constraints
(NACs), where the controls corresponding to the same state par-
ent node must be equal. This follows because a control based on d,
cannot be determined before d; is realized. The last equation (32f)
defines a robust horizon N,<N which requires the uncertain param-
eters to remain constant after the robust horizon. This limits exces-
sive branching of the scenario tree and makes the solution of problem
(32) tractable.

While multi-stage NMPC based on (32) leads to high perfor-
mance control under uncertainty, efficient optimization strategies
are needed to solve these problems in real time. In recent studies
advanced step [54] and scenario generation and pruning concepts
[56-58] have been developed for multi-stage NMPC that lead to
faster solution strategies and consideration of larger dynamic sys-
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A
=2
4

Fig. 6. Reduced scenario tree with n;=1, N=3 and N,=2.

tems. A case study that illustrates this approach is presented in
Section 6.3.

CAPRESE: OPTIMIZATION MODELING PLATFORM
FOR SENSITIVITY-BASED NMPC

New modeling and optimization tools have created an opportu-
nity for the creation of advanced frameworks for problems in design,
control and operations. These optimization platforms incorporate
the capability of high-level programming languages instead of
application-specific or proprietary languages like MATLAB, GAMS,
AMPL or AIMMS. Interfacing these platforms with state-of-art
solvers also makes it easier to deal with more complex problems.
Of particular interest are optimal control problems (OCPs) that
incorporate first-principles process models as part of a mathemati-
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Fig. 7. The CAPRESE Pyomo Framework for NMPC and MHE.

cal optimization problem. Within the optimization algorithm, these
DAE models can be handled directly by means of multiple-shoot-
ing or orthogonal collocation.

Several frameworks have been developed for model-based opti-
mal control, including ACADO [59], CasADi [60], APMonitor
[61], JuMP [62] and Pyomo. In Pyomo [63] the dynamic optimi-
zation environment requires a combination of accessible model-
ling interfaces to solution algorithms. Rather than creating a new
programming language, Pyomo provides the necessary optimization
objects in Python, which promote the flexibility of applications for
optimization-based algorithms for dynamic systems. Here, we de-
scribe a new optimization modeling framework that includes NMPC
for the control computation and MHE for state estimation. Both
of these are enhanced for real time nonlinear control and state esti-
mation through NLP sensitivity.

Fig. 7 presents the framework entitled Control and Adaptation
with PREdictive SEnsitivity (CAPRESE), which facilitates the auto-
matic construction of NMPC and MHE problems with given
dynamic models. CAPRESE also incorporates algorithmic man-
agement issues such as initialization, diagnostics, post-optimality
analysis and sensitivity computations. This open framework is
straightforward to extend, though some applications might require
tailored algorithmic considerations.

The CAPRESE framework for NMPC/MHE is displayed in Fig.
3 and comprises three main classes. The base class DynGen incor-
porates the dynamic model discretized in time using Pyomo.DAE
[64] and provides simple plant simulations, predictions and data
management. This class is inherited by NMPCGen, which is sub-
sequently inherited by the MHEGen class. These classes are respon-
sible for the formulation and solution of problems (4) and (6),
respectively, and they are equipped with relevant methods for the
underlying optimization problem (e.g. compute arrival cost for
MHE or find target states for NMPC). Communication between
models inside the framework leads to a closed loop between plant,
estimator and controller. In addition, the user declares the model,
states, controls, setpoints, and corresponding bounds.

In CAPRESE, sensitivity computations for NMPC and MHE
based on (23) have been modified to further economize off-line
and on-line computation and provide greater functionality. In previ-
ous work, sSIPOPT [65] was used to compute the sensitivity infor-
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mation, but it offers only limited capability for structured KKT
systems. To overcome these limitations, k_aug was created to com-
pute sensitivity matrices from the solution of (23). k_aug incorpo-
rates various sparse linear algebra libraries and computes sensitivities
from the KKT conditions (16) through an “adjoint” formulation of
(23), where the only on-line sensitivity computations are simple
matrix-vector products. The on-line component is shown in Fig. 3
as dot_sens, where sensitivity-based updates of the control vari-
ables are performed, using off-line information from the sensitiv-
ity matrix.

More information on the capabilities and structure of CAPRESE
can be found in [66].

NMPC CASE STUDIES

The NMPC and MHE advances discussed above are illustrated
in this section with challenging nonlinear applications of control and
dynamic optimization. The past two decades have seen widespread
applications of NMPC on important and challenging, real-world
processes. Here we concentrate on three case studies: a demon-
stration of asNMPC and asMHE with CAPRESE for a distillation
unit, economic NMPC for a distillation system, and multi-stage
NMPC for a semi-batch polymer reaction system.

1. Advanced Step NMPC with CAPRESE

For the CAPRESE case study, the distillation column shown in
Fig. 8 is modeled with dynamic MESH (mass, equilibrium, sum-
mation, heat) equations as presented in [67]. The DAE model con-
siders the separation of a binary mixture of methanol and n-propanol,
with tray-by-tray mass and energy balances, Raoults Law for ther-
modynamic equilibrium, and tray liquid flows determined by the
Francis weir formula. For a column with 40 trays, the DAE model
has 84 differential equations. Temperatures are measured on each
tray, with temperature setpoints on trays 14 and 28. The control
variables are the reboiler heat duty and the reflux ratio. Thus, n,=2,

[Condenser]
1 , [Distillate]
Contrlol:
[Inlet] Reflux ratio
x—/ [Reboiler]
[_—\ .
——] ____ Control:
 — Reboiler
< I A Heat
[Bottoms]

Fig. 8. Case study 1: Distillation column schematic.

Table 1. Distillation case study in CAPRESE using ideal and advanced
step NMPC/MHE. average timings for the optimization and
sensitivity in CPU seconds, using IPOPT 3.12 and intel i7-
6700 CPUs. asNMPC online computation is with dof sens

CAPRESE Steps iNMPC/iMHE asNMPC/asMHE

NLP (IPOPT) 11.0/8.50 11.0/8.50

Red. Hess. (k_aug) -/3.54 -/3.54

Sens.Matrix -/- 1.87/2.58

Online Comp. 11.0/12.04 0.10/0.49
n,=84. n,=40.

The continuous time DAE model (1) is transformed into a dis-
crete time model (3) using 3 point Radau collocation. MHE and
NMPC were run with the advanced step and ideal strategies (assum-
ing no computational delay), with ten-step horizons (N=. /=10)
and 60s sampling times. The resulting NLP problems have 20672
variables and 19792 equations in the case of MHE (6), and 19036
variables and 19016 equations for NMPC (4). Also, random noise
was introduced on all plant states. The results for this case study
are shown in Fig. 9.

For state estimation the maximum relative error considers all
the states of the problem. It can be seen, that these errors remain
small for most of the time. However, at the setpoint change at
=350, the relative error grows very quickly. Nevertheless, advanced-
step MHE follows similar behavior to ideal MHE with only a small
difference in performance. Ideal NMPC provides reasonably good
performance, even under the presence of noise, and advanced-step
NMPC follows the ideal case very closely. The average timings for
this problem are displayed in Table 1. Because the on-line compu-
tations require much less time than offline, the total computational
delay for both asMHE and asNMPC amounts to only 0.59 CPU
seconds, 39 times less than the 23.04 CPU seconds required for the
ideal strategies. More information on this case study can be found
in [66].

2. Economic NMPC for Distillation Systems

For the second case study we consider the dynamic process
shown in Fig. 10 with two distillation columns in series [68] with
three chemical components, A, B, C. The bottom product of the
first column is fed to the second column, and the distillation flow-
sheet is shown in Fig. 10. The distillate of the first column has
95mol% A, the distillate of the second has 95mol% B, and the
bottom of the second column has 95 mol% C. The vapor-liquid
equilibria are modeled using constant relative volatility, and Fran-
cis weir formula is used to model the tray hydraulics. In addition,
dynamic component and total mass balances are written for each
tray as well as the condenser and reboiler. More details of the
model can be found in [49,68]. Each column has 41 equilibrium
stages including the reboiler, leading to 246 states and 8 controls.

The objective is to minimize the stage costs for feed, and energy
to the reboilers, minus the cost of the products, ie.,

Y =ppFi+py(V+ Vi) =Pp1-Di=pr Dy =Py B,

where pr=pp,=pp=1, Pp,=2, py=0.008%/mol are the respective prices
of feed, D,, D,, B, and reboiled vapor in the two columns. The
composition of the feed is 40 mol% A, 20 mol% B, and 40 mol%
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Fig. 9. Case study 1: Performance profiles for MHE (a) followed by two outputs (b), (c) and two inputs (d), (¢) for NMPC.

Dy, = 95%A

"\ D; =95%B

B, > 95%C

Fig. 10. Case study 2: Distillation flowsheet.

C. The product purity is implemented as an inequality constraint.
The DAE system is discretized using three point Radau colloca-
tion with a finite element length of 1 min and N=25. The NLP (13)
for eNMPC has 120,000 variables, 108,000 equality constraints, and
14,000 inequality constraints. The models are implemented in AMPL
and solved with IPOPT.

Finding regularization weights o for (28) that ensure positive

July, 2021

definite Hessians of 1" over a high-dimensional state space is
cumbersome, and for this we apply Gershgorins theorem to estimate
p (See [69] for more detail on this calculation and evaluation.).

We compare solution times for the specific cases of eNMPC-sc
where (29) is implemented with 6=0.01, and for eNMPC-reg (28)
with 100% of the Gershgorin weight g along with smaller per-
centages. Solution of the eNMPC-sc problems requires an average
of 271 CPU seconds and 188 IPOPT iterations, while eNMPC-reg
averages only 83 seconds and 70 iterations. Although we see that
regularization allows faster computation, Table 2 shows that it also
leads to more conservative economic performance.

Table 2 presents a comparison of accumulated stage costs (2,
(%, w)— 1) from the same initial condition. This metric shows
the improvement obtained over tracking the optimal setpoint.

From the nominal results, it is apparent that eNMPC-sc pro-
vides better performance over the regularized formulation eNMPC-
reg, and it also performs better than economic stage costs alone,
for which stability cannot be guaranteed. Also, note that reducing
the regularization percentage does little to improve performance.

In Table 2 we also consider cases with additive noise w; in the
feed rate and composition. Here w; is sampled from a normal dis-
tribution with standard deviations of 0.1 for feed rate and 0.01 for
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Table 2. Distillation example with objective improvements given by
TV (% W)~ 1/2)

Case nominal w/ noise
Tracking —20.903 —20.736
eNMPC-reg 100% —22.665 —21.662
50% —22.676 —21.511

25% —22.658 —21.361

eNMPC-sc, 6=0.99 —25.876 —24.283
0.9 —28.933 —24.162

0.5 —29.701 —24.234

0.1 —29.453 —25.656

0.01 —29.693 —24.039

Economic —27.081 —24.479

A and B mole fractions. As shown in Table 2, eNMPC-sc using (29)
shows significantly improved economic performance over eNMPC-
reg (28), with and without noise. Moreover, performance with eco-
nomic stage costs alone is decreased in the presence of noise. More
information on this case study can be found in [49].

On-line Optimization of Semi-batch Process

The third case study deals with NMPC formulations for batch-
type processes that operate over a finite time period. In this case
the NMPC formulation is implemented over a shrinking horizon.
For these processes, the presence of uncertainty, from input distur-
bances and model inaccuracies, often requires careful attention.
This is particularly true when meeting process constraints that
deal with equipment limitations, product specifications and safe
operation. For these issues, we explore the application of robust
NMPC formulations mmOCP (31) and msNMPC (32).

This case study considers an anionic homopolymerization pro-
cess operated in semi-batch mode. Polymerization of propylene
oxide (PO) to polypropylene glycol (PPG) is challenging to con-
trol. The reaction is highly exothermic and needs to satisty strict
safety constraints, along with stringent product specifications. More-
over, the model has several uncertain parameters that can impact
safe and high performance operation. Fig. 11 presents the process
unit as well as its underlying reaction mechanism. The employed
process model is obtained from a first-principles model derived in
[70]. A detailed model of this process is presented in [57]; addi-
tional modeling and optimization studies include [52,55].

The NMPC controller has an economic objective function to
minimize the final batch time. Operational constraints include time
dependent temperature constraints (T'€[373 K, 423 K]) and adia-
batic temperature rise (T,,,<443 K), along with endpoint constraints
on the product quality indicators: number average molecular weight
(NAMW), unreacted monomer conversion and fraction of unsat-
urated byproduct.

As seen in Fig. 11, the process is controlled by monomer feed-
rate and the cooling jacket temperature. Since these enter linearly
in (4), optimal control of this system can give rise to singular con-
trol problems, which may lead to undesirable oscillatory control
profiles [2]. We avoid this behavior by regularizing the control dis-
placement and writing the stage cost as follows:

Monomer feed F(t)

Coolant
T (t)

IR

Polymer product:
* unsat. growing chains U
* unsat. dormant chains R
* sat. growing chains G
* sat. dormant chains D

Hydrolysis
W+ M > 2D, Transfer
G, +M - D, +U,
Initiation Up+M — R, +Ug
Go+M - Gy
Up+ M > U,y Exchange

Cr, aF Dy = 105 A gy
Uo+Ry >R+ U,
G, + Ry, - D, + U,

Propagation
Gn +M - Gn+1
Un+M = Upyq

Fig. 11. Case study 3: Schematic of the PO polymerization process
and summary of the underlying reaction mechanisms.

mod. i o o
wi = A+ () (h-ug). (33)

This stabilization has negligible influence on performance, and by
summing At/ in each scenario the remaining batch time is mini-
mized at every time step in the NMPC scheme.

The uncertainty vector d consists of three elements: A,, the pre-
exponential factor for the propagation reaction rate, A, the pre-
exponential factor for the initiation reaction rate, and U, the jacket
heat transfer coefficient, which can vary due to fouling. All three
parameters have strong influence on model predictions and the
process constraints. Also, the process state is inferred from incom-
plete and noisy state measurements.

Moreover, the time intervals At/ in the stage costs are degrees of
freedom in the optimization, with non-anticipativity constraints
imposed in the multistage problem (32) along with a requirement
that At/ decrease monotonically as [ increases. This avoids overly
optimistic choices in early phases of the process. The number of
control time intervals is chosen as N=24, which allows a reason-
able sampling time and sufficiently accurate discretization.

The dynamic optimization problems, mmOCP (31) and msN-
MPC (32), are solved using a simultaneous collocation approach,
where the underlying differential-algebraic process model is discret-
ized with three-point Radau collocation on finite elements, and solved
using IPOPT 3.12 [33]. Parametric sensitivity for adaptation of the
uncertainty set is extracted from the KKT-system at the optimal
solution of the corresponding NLPs using k_aug [66]. The overall
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framework for the shrinking horizon NMPC is embedded in Python
using Pyomo as the modeling language.

Dynamic Optimization Results

Both open-loop and NMPC control approaches are implemented
and compared using systematic sampling from the uncertainty set
deD. The evaluation of the closed-loop system simulations is per-
formed for all parameter realizations on the grid of {-20%, —10%,
0%, 10%, 20%}° deviating from the nominal parameter values.

We apply two open-loop control strategies for trajectory optimi-
zation. The first determines economically optimal control profiles
for the nominal process model. The second employs the multi-
model approach determined by the mmOCP problem.
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(d) Constraint Violations for Multi-stage NMPC

Fig. 12. Temperature T and adiabatic temperature rise T,; profiles
for all parameter realizations from the sampled grid com-
pared to the path constraint levels (dashed red lines).
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Figs. 12(a), (b) show the open-loop profiles for temperature and
adiabatic temperature rise, obtained by exhaustive sampling of the
uncertainty set. For the nominal solution (a) the results show large
violation of path and endpoint constraints for several parameter
realizations. In contrast, the multi-model approach (b) yields robust
satisfaction of the constraints for all sampled parameter realizations.

Next, we compare the control performance of nominal NMPC
and multi-stage NMPC, where we set N,=1 in problem (32). The
reactor temperature and adiabatic temperature rise profiles are shown
in Figs. 12(c), (d). Nominal NMPC shows severe constraint viola-
tion for the adiabatic temperature rise, while multi-stage NMPC
essentially removes these violations and substantially improves
robustness.

While Fig. 12 exhibits constraint violations with the four ap-
proaches, these results can be further improved [57] if on-line state
estimation (6) is coupled to the NMPC problem (4). Table 3 com-
pares the objective functions for the four approaches. Without
state estimation, the comparison shows that multi-stage NMPC
and mmOCP essentially eliminate the constraint violations. How-
ever, mmOCP requires almost double the operating time. In con-
trast, multi-stage NMPC leads to improved operation by relying
on feedback during the process. Compared to mmOCE, the aver-
age operating time is reduced by 23%.

Moreover, with state estimation, performance of multistage
NMPC further improves, as shown in Table 3. Compared to non-
robust nominal NMPC, multi-stage NMPC with state estima-
tion requires an increase of only 7.6% in average operating time.
As a result, multi-stage NMPC formulations provide robust NMPC
solutions for challenging applications and significantly better per-
formance than worst case approaches.

Finally, for nominal NMPC, 99% of all cases were solved in less
than 1 CPU s on a laptop computer. For multi-stage NMPC, 99%
of the NLP problems were solved in less than 10 CPU s, with the
maximum timing at 13 CPU s. This is well below the sampling time
(10 minutes) required for this polymerization process. Additional
comparisons and computational details can be found in [57].

CONCLUSIONS AND FUTURE DIRECTIONS

Nonlinear model predictive control (NMPC) is an effective and
efficient vehicle for on-line dynamic optimization, with significant
benefits for challenging real-world problems in process engineer-
ing. This article reviews several important directions for the reali-
zation of large-scale process applications with NMPC.

Table 3. Maximum, average and minimum operating time (minutes)
attained by different control approaches without (italic) and

with (bold) on-line estimation

Control approach ' t "
open-loop nominal 305.5

open-loop multi-model 582.8

nominal NMPC 549.2 379.9 2772
multi-stage NMPC 566.5 449.9 387.0
nominal NMPC 531.6 360.7 2464
multi-stage NMPC 549.3 388.0 272.6
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First, we note that time critical solution of NMPC and its com-
panion moving horizon estimation (MHE) problem requires effi-
cient and reliable formulations and solution strategies. In particular,
the formulation of NMPC problems must be robust to input data
from the plant. The NLP formulation therefore needs to obtain
solutions that satisfy suitable constraint qualifications and second-
order conditions (at least MFCQ and GSSOSC). Here we show
that these requirements can be ensured through regularized stage
costs and relaxed state constraints. These are essential for nominal
and ISS stability for NMPC.

Second, NMPC problems can be solved quickly by powerful
solution strategies that use full discretization (based on orthogonal
collocation on finite elements) and fast, large-scale NLP solvers. In
particular, barrier NLP solvers provide fast solutions and allow sen-
sitivity with respect to NLP solutions, at virtually no additional com-
putational cost. Moreover, these properties allow the development
of advanced step approaches for NMPC and MHE problems, where
most of the NLP solver effort is performed in the background and
very fast control updates are performed, once the plant state is
available. As a result, computational delay is virtually eliminated.

The implementation of these advances and their realization in
real-world applications requires optimization frameworks and plat-
forms that support modeling of the NLP, seamless interaction with
the NLP solver and management of the NMPC and MHE closed-
loop tasks. An example framework is the CAPRESE system build
on the Pyomo platform.

Finally, the advances described in this article are illustrated by
three case studies. The first provides a demonstration of advanced
step NMPC and MHE approaches on an 84-state distillation con-
trol problem, using the CAPRESE framework. On-line solution of
both the NMPC and MHE problems require only 0.59 CPU s of
on-line computation, 39 times less than with ideal NMPC/MHE.
The second case study examines improved formulation of eco-
nomic NMPC for a large distillation system. Here, both regulariza-
tion and stability-constrained strategies are compared. The results
show stable eNMPC problems can be formulated with significantly
improved performance over tracking an optimal setpoint. The third
case study deals with on-line dynamic optimization under uncer-
tainty for a semi-batch polymerization process. Here, the improved
performance of multi-stage NMPC is demonstrated over both nomi-
nal NMPC, which can suffer significant constraint violations, and
worst-case NMPC, which can lead to very conservative performance.

While these case studies demonstrate the effectiveness of recent
advances for NMPC, they also motivate a number of future research
areas. In particular, there is a clear need for more powerful NLP
solvers and platforms to tackle larger NMPC problems, including
multistage NMPC. These developments will be aided by further
application of decomposition strategies and high-performance com-
puting. A number of open questions relating to stability and robust-
ness also need further attention, especially for eNMPC and multi-
stage NMPC. Finally, the impact of these NMPC advances also
needs to be realized in the areas of decentralized and distributed
control.

In summary, further advances in NMPC and exploration of excit-
ing research questions will continue to engage the control commu-
nity and lead to even more useful and effective strategies. Ultimately;

these will make on-line dynamic optimization an indispensible tool
for process applications.
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