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AbstractThe location and distribution of aluminum in zeolites is considered important in determining various
properties, such as acidity and reactivity. Controlling the placement of aluminum substitution has therefore been of sig-
nificant interest, and a number of studies have been conducted, including synthesis methods using either different
organic structure-directing agents (OSDAs) or cationic species, and the application of dealumination as post-process-
ing. In addition to experimental developments, computational methods have emerged as a useful tool for analyzing the
effects of different types of aluminum siting on catalytic properties, especially by incorporating statistical methods. A
review of recent developments and findings related to aluminum siting and its effects is presented in this work. Analy-
sis of the thermodynamic distribution of aluminum, as well as synthetically altered distribution in different zeolite
frameworks, has been discussed. Computational studies have revealed that catalytic properties are sensitive to adsor-
bate-dependent properties such as the size of rings and voids for the residence of aluminum, the relative distribution of
acid sites, and the adsorption properties of molecules in different framework motifs. Along with the atomic scale evalu-
ation of synthetic treatments in positioning the aluminum, cases of instrumental analysis methods and their verifica-
tion with simulations is discussed, demonstrating how theories have complemented and, sometimes modified,
experimental perspectives. Lastly, recent progress in incorporating machine learning techiques, its application to zeo-
lites, and directions for future work are introduced.
Keywords: Zeolites, Acid Sites, Statistical Averaging, Computational Chemistry, Machine Learning

INTRODUCTION

Zeolites are known for their outstanding selective reactivity in
the mediation of various chemical reactions and have taken deep
root in the field of catalysis, ranging from petrochemical reactions
to ion exchange, and gas separation [1]. The uniformity of unique
microporous structures also makes them useful as molecular sieves.
More than 200 unique zeolite frameworks have been identified,
while many more theoretical structures are thought to exist [2].

Recent concerns regarding global warming and fossil fuel deple-
tion have sparked interest in zeolites as potential catalysts for con-
verting alternative sources, such as shale gas and biomass, to value-
added products via C1-3 chemistry [3]. This feature fueled com-
putational studies on the atomistic scale to investigate the struc-
ture and reactivity of various zeolites [4,5]. One of the directions
for the application of computational power in this field is to devise
a strategy to increase the reactivity of zeolites by exchanging par-
ticular silicon atoms with 3+ ions, most commonly aluminum (Al)
atoms. Since the ground state energy of the structure can be obtained
directly using density functional theory (DFT), the thermodynamic
properties concerning the location of Al are predictable.

The accumulation of microscopic studies recently suggested meth-

odologies that consistently link the results at the atomic scale (the-
ory) to those on the real visible scale (experiment). An example is
a statistical approach, where macroscopic properties can be deter-
mined as an ensemble of microscopic properties; individual DFT
calculations at the atomic level can be considered to produce each of
these ensembles and to provide the probability of its existence. Such
calculations would require excessive computational effort, but recent
hardware developments have resolved these issues to some extent.

In this study, some of the reported efforts to control Al siting and
assess the role of Al placement in the field of zeolite science are
reviewed. A brief introduction to zeolites and the commonly used
statistical averaging is made, followed by a discussion on the catalytic
significance of Al distribution. Research works that have focused
on the thermodynamic placement of Al will be presented followed
by synthesis methods for controlling Al distributions, such as organic
structure-directing agents (OSDAs), incorporation of different cat-
ions, and dealumination post-processing, along with a theoretical
analysis. Recent computational studies that have disputed common
knowledge in the field of zeolites will be presented. In the last sec-
tion, machine learning methods applied to zeolites and other het-
erogeneous catalysis are summarized, with emphasis on adequate
structural representation methods.

STATISTICAL METHODS

Alumina silicates have different tetrahedral sites (T sites), each
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containing four oxygens in the vicinity working as possible Brøn-
sted acid sites (BAS), and the catalytic properties are highly depen-
dent on the locations of the BAS site, that is, the geometric conditions
in which the reactants are situated. Although many researchers
have attributed this feature to different strengths of acid sites in the
past, recent studies have found that the degree of difference in
acidic strength is small, indicating that the variance of the catalytic
property may result from the probabilistic distribution of protons
[6]. This motivated the application of statistical averaging to calcu-
late all or a large portion of energies allocated to different Al and
BAS locations, and the significant increase in computational power
and the advent of efficient algorithms has now enabled the imple-
mentation of the approach. Boltzmann averaging of different proper-
ties can be computed on the basis of the energies, as follows [7]:

(1)

where  represents the averaged property of interest, and
EZA, i and GZA, i denote the specific property and Gibbs free energy,
respectively, in the i-th site. The symbols, kB and T, represent the
Boltzmann constant and temperature, respectively.

The statistical approach based on averaging offers a realistic link
between theoretical calculations and the experimentally observed
zeolite properties. For example, by averaging over the four BAS sites
for each Al placement, properties such as site-specific acidity can
be obtained, while averaging over all possible Al placements pro-
vides a framework-specific property of thermodynamically natu-
ral distribution of Al.

WHY IS Al SITING IMPORTANT ?

The conversion of dimethyl ether (DME) to methyl acetate (MA)
in the 8-membered ring (8MR) is considered as an example to show
the dependence of catalytic reactivity on the position and distribu-
tion of Al in the zeolite. Cheung et al. reported that H-mordenite
(H-MOR) and H-ferrierite (H-FER) zeolite catalyzed the conver-
sion of DME to MA with a stable reaction rate and >99% selectiv-
ity at low temperatures (423-463 K) [8]. The reaction mechanism
was suggested as follows:

R1: Z-H+DMEZ-CH3+H2O (2)

R2: Z-CH3+COZ-CH3CO (3)

R3: Z-CH3CO+DMEZ-CH3+MA (4)

The methyl group produced by the dissociation of DME (R1)
combines with CO to form an acetyl group (R2), which reacts with
DME to produce MA (R3). The rate-determining step (RDS) of the
mechanism was verified to be R2 by kinetic experiments and nuclear
magnetic resonance (NMR) spectroscopy [9]. Bhan et al. found
that the carbonylation reaction only occurred in the zeolites, which
consist of the 8MR site [10]. The number of BAS within 8MR chan-
nels was measured by the rigorous deconvolution of the infrared
bands for BAS in H-MOR and H-FER, and the MA production
rate was proportional to the number of BAS within 8MR.

Boronat et al. explained the attribute of the BAS in the 8MR cage
of the zeolite using first-principles calculations on H-MOR [11].
The activation energies of the methyl group by four attacking mol-
ecules (CO, CH3OH, DME, and H2O) were calculated at each T-
site in H-MOR, as follows:

R4: Z-CH3+COZ+CH3CO+ (5)

R5: Z-CH3+CH3OHZ+(CH3)2OH+ (6)

R6: Z-CH3+DMEZ+(CH3)3O+ (7)

R7: Z-CH3+H2OZ+CH3OH2
+ (8)

It was shown that DME could access the methyl group on the
T sites to produce trimethyloxonium (R6), except for the T3-O33
position, where the activation energy for R6 is higher than that of
R4 due to the steric hindrance of DME resulting from the unusual
orientation of the methyl group at T3-O33 in the 8MR, indicating
that the unique selectivity appears only at the T3-O33 position.

The Al distribution can significantly influence the BAS in 8MR
and the reactivity of the DME carbonylation reaction. Li et al.
quantitatively verified that the formation rate of MA by DME car-
bonylation reaction is proportional to the concentration of BAS in
8MR [12], which could be controlled by introducing various organic
structure-directing agents (OSDAs) for the synthesis of the H-MOR
structure. It was also shown that the strength of the interaction
between the amine or sodium cation and [AlO4] played an import-
ant role in the Al distribution. The stronger the interaction, the
higher the number of Al in the 8MR, and the corresponding BAS
concentration.

Jung et al. found that ferrierite zeolite synthesized by the seed-
derived hydrothermal method without any OSDA had a high cat-
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Fig. 1. DME conversion over seed-derived ferrierite zeolite. Inset pic-
tures show the atomistic location of aluminum for the most
active site in 8MR (upper) and the FESEM image of FER-S1
sample (lower). Reprinted with permission from [13] Copy-
right (2020) American Chemical Society.
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alytic reactivity for DME carbonylation to MA [13] because recrys-
tallization during the preparation step resulted in high crystallinity
for many BAS in 8MR. In the subsequent study, the most active
aluminum location that drastically enhanced the carbonylation rate
was identified and the strength of the degree of the interaction
between BAS and DME was calculated by first principles calcula-
tions, as shown in Fig. 1 [14].

Another important class of zeolites is ion-exchanged zeolites.
Zeolites have the intrinsic ability to remove various ions from aque-
ous solutions, by either the adsorption of single-charged ions or
the coadsorption of multiple-charged ions at Al- sites [15]; Exchange
of hydrogen atoms with various metal cations such as Cu2+ and
Ag+ can result in well-distributed single-atom catalytic sites. Wide
application of ion-exchanged zeolites has been reported, including
deNOx reactions for mobile vehicles [16].

Aluminum distribution is also important in ion-exchanged zeo-
lites, as BAS distribution determines the number and location of
active exchanged metal ions, and thus the catalytic activity. For
example, it was reported that the location of BAS can significantly
influence methane activation energy in Zn-exchanged MFI zeo-
lite [17]. Li et al. also found rings with multiple BAS selectively
accommodate Z2Cu species, whereas rings with single BAS will
tend to form ZCuOH as the dominant Cu exchange scheme in Cu
exchanged zeolites (where Z stands for BAS) [18], again emphasiz-
ing the importance of BAS distribution on the active sites.

EFFECTS OF THERMODYNAMIC DISTRIBUTION OF 
Al AND BAS ON CATALYTIC PROPERTIES

Al is placed in zeolites according to the rules governed by ther-
modynamics and kinetics of the formation. One of the most famous
rules is Löwenstein’s rule, which states that the formation of Al-O-
Al sequence is generally prohibited due to the energetics of forma-
tion [19-21].

Information on the thermodynamically stable sites of Al substi-
tution and, more importantly, their distribution, provides valuable
insight into the properties of zeolites. Since adsorption energetics,
acidity, and stability can all be altered by the location of Al and
BAS, it is crucial to know their probability of existence in the actual
zeolites. Several studies that have performed extensive calculations
of single and multiple substitutions on the unperturbed, thermo-
dynamically preferable locations of Al are provided below.

Over the years, theoretical studies on zeolites have moved from
simple cluster models to larger clusters or periodic structures [23-
25]. Investigation of both single and multiple site substitutions and
their influence is now being conducted based on different levels of
theories, including molecular mechanics (MM), quantum mechan-
ics (QM), and hybrid methods. Each method provides different
levels of accuracy and scale of simulation.

Preferential Al locations and the consequent location of BAS
can be determined by comparing relative energies to pure silicate
frameworks. Some of the earlier studies used small and medium
sized cluster models to calculate Al substitution energies [26]. By
placing the BAS position of interest at the center and terminating
by OH bonds, cluster models can be built as conducted in periodic
zeolite frameworks. Although the small-sized cluster models pro-

vided relatively inexpensive means to determine the stable sites in
the zeolite frameworks, they had limitations in accurately express-
ing the effects of paired Al sites. Therefore, either periodic models
or medium-sized cluster models are better suited for discovering
more detailed information on the distribution of Als in the zeolite
frameworks at the expense of computational burden.

Investigation of all sites, including all combinations of paired
sites, would produce the most accurate description of the preferential
Al siting, although a substantial number of calculations are required,
especially when two or more paired Al cases are considered. A
way to address this problem of exponentially growing number of
calculations would be to combine known scientific discoveries or
apply the hypotheses such as Löwenstein’s rule, to narrow down
the sites of interest. He et al. investigated Al siting in periodic FER
zeolites using a hybrid method based on the ONIOM code (our
own N-layered integrated molecular orbital+molecular mechan-
ics) [27]. Their calculations for the substitution and deprotonation
energies of different configurations in all isolated T sites revealed
that the T4 site was the most stable, with the T1 site as the second
most stable (Fig. 2). In the case of two Al substitutions, the lim-
ited search space for a combination of T4 and T1 sites was consid-
ered. The Al4-O6-Si2 acid site was fixed because it was the most
stable, while the other sites were varied for substitution. The most
stable case was found to be the T4-O(SiO)2-T4 site substitution,
where the two T4 sites that were located in the same 6MR were
replaced by Al, enabling intra-framework hydrogen bonds. They
further suggested the hypothesis that in the case of FERs with high
Al content, all T4 sites are filled before T1 sites.

Fig. 2. The Al sites in FER zeolites (top) and two most stable con-
figurations in single and double Al substitution as shown by
He et al. [26].



1120 S. J. Kwak et al.

June, 2021

Practical consideration can be given to finding the most stable
sites and gain insight into the specific mechanisms effectively, nar-
rowing down the search space of Al and BAS locations by apply-
ing certain hypotheses. However, the investigation of the nature of
zeolites themselves requires more reliable proof regarding the loca-
tion of Al distributions, and the resulting catalytic properties must
be obtained by more exhaustive calculations. Grajciar et al. sur-
veyed all possible isolated and paired sites of Al siting in H-FER
zeolites with Si/Al ratios of 71 : 1, 35 : 1, and 8 : 1 [28]. The Si-O-Al
vibrational frequencies of OH species (OH) and deprotonation ener-
gies (DPEs) were obtained using periodic DFT calculations. They
found that the Si-O-Al bond angle generally correlated with OH

with exceptions; intra-hydrogen bonded Brønsted acid sites derail
from this correlation. A trend could be observed between the dif-

Fig. 3. Deprotonation energies against various configurations of Si/Al ratios and nth hydrogen deprotonation. Reprinted with permission
from [28]. Copyright (2009) Royal Society of Chemistry.

Fig. 4. Deprotonation energies for the isolated and all site-pairs when the second site is protonated. Ensemble averaged values are also
shown; Reprinted (adapted) with permission from [29]. Copyright (2018) American Chemical Society.

ferent ratios of Si/Al systems, where DPEs were high for highly Al
substituted cases when averaged over subsequent configurations
(Fig. 3). Although the results based on simple averaging may be
trivial, they could still approximate the experimentally measured
DPEs.

While Al substitution in frameworks may be governed partially
by thermodynamic stability, the most preferred adsorption sites
may differ from the most stable acidic sites, depending on adsor-
bate types as shown in [28]. Thus, various adsorption too must be
asessed with statistical averaging. Such work has been demon-
strated by Nystrom et al. where they applied statistical averaging to
investigate dehydrogenation energy (DHE), DPE, and NH3BE (am-
monia binding energy) for all isolated and paired sites of Chaba-
zite (CHA) zeolites [29]. They found that Al atoms up to 9 Å apart,
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that is, up to three linking Si-T sites, influence each other’s acid site
strengths. For example, two paired BAS in the 6-membered ring
(6MR) will become stronger than those located in different rings
due to the hydrogen bond interaction. Using periodic DFT calcu-
lations the Boltzmann and arithmetic averaged energies were ob-
tained for the isolated and all 23 site pairs of Al siting. Since CHA
zeolites have only one symmetrically distinct T site, it was possible
to average in two axes across different O sites and different T sites.
The average stability of the isolated hydrogen site was shown to be
a good predictor of the location of the second hydrogen. Ensemble-
averaged DPEs were very important for paired site motifs, as the
difference from the lowest DPE was up to the order of ~10 kJ/mol.
The sites that were calculated to be highly acidic were unlikely to
exist because proton transfer would occur easily to satisfy the
Boltzmann distribution of proton location. A second Al site stabi-
lizes the conjugate base when placed in the proximity of the de-
protonated site. For site pairs included in the same ring or in close
proximity, a decline in DPE values was observed, attributed to the

dipole-dipole interaction or hydrogen bond formation. As a result,
a correlation between proton-anion distance and ensemble-aver-
aged DPE was observed (Fig. 4). This trend was broken for the
site pairs sharing the same 4-membered ring (4MR) due to signifi-
cant strain effects. However, when NH4

+ species substituted proxi-
mal proton sites, a reversal in trend was shown because NH4

+ failed
to stabilize the conjugate base in proximal Al siting and DPE val-
ues increased by up to 11 kJ/mol on average. Analysis of this phe-
nomenon site by site showed that the degree of increase for the
paired sites in the same 6MR was large (up to 40 kJ/mol higher
DPE than that of the isolated sites), while the value was lowered by
10kJ/mol for the site pairs within the same 8MR. This is attributed to
the fact that NH4

+ will stabilize the deprotonated sites if two BAS
sites are located in the proximity of the same 8MR. Therefore, when
BAS is occupied by different adsorbates, trends in acidity will change
depending on the pore size, adsorbate size, and site proximity.

Although several studies have examined the thermodynami-
cally stable distribution of BAS, the hypothesis that thermodynam-

Fig. 5. Distribution of relative energies in different zeolite frameworks with varying Si/Al ratios. Reprinted with permission from [30]. Copy-
right (2016) American Chemical Society.
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ically stable Al siting correlates with actual siting in zeolites is difficult
to prove, though it seems plausible by common sense. Such gen-
eral statements can only be affirmed, or at least presumed to be
true, after numerous cases have been examined and statistical sig-
nificance has been demonstrated. Muraoka et al. applied a statisti-
cal approach to the data generated by molecular dynamics for
43,000 initial structures of different topologies, Al locations, and
compositions [30]. They found that high Al content resulted in
low density and large variance in energy, indicating that the change
in Al location leads to a change in lattice energy. They compared
the relative energies for different Si/Al ratios to find a linear scal-
ing relationship. For low Si/Al ratio, the energetic variance regard-
ing Al location increased. It was also found by investigating the
relative stability of the Si/Al ratio for each type of zeolite frame-
work that the differences in energy depend on the composition and
topology (Fig. 5). For several selected zeolite topologies, a specific
distribution of Als was found to be statistically more stable than
random distributions, indicating that the Al siting and the synthe-
sis of zeolites is governed by not only the kinetics but also the ther-
modynamics of Al substitution. Some computational works men-
tioned in this section have been summarized in Table 1.

SYNTHETICALLY CONTROLLED Al DISTRIBUTION

In the above sections, zeolites that follow the thermodynami-
cally natural placement of Al were discussed. However, in most
cases, different synthesis conditions are known to result in differ-
ent distributions of Al, and many researchers have been seeking to
exploit this feature, aiming to find ways to place Al on the prefer-
ential sites to enhance catalytic and mechanical properties. It has
been reported that structure-directing agents (SDAs) can control
the framework morphology; preferential aluminum placement is
possible when charged SDAs are used.

The intrinsic activity of zeolites is determined by the distribu-
tion of BAS rather than the Si/Al ratio. Xu et al. synthesized Y zeo-
lite with a Si/Al ratio of 3.6 by introducing sodium fluoride, while
the synthesis without NaF resulted in a ratio of 3.3 [31]. Infrared
spectroscopy (IR) and thermogravimetric analysis (TGA) were used

to calculate the number of BAS samples. The catalytic activity of
the monomolecular propane cracking was evaluated, and the Arrhe-
nius plots were used to determine the reaction rate and activation
energy (Fig. 6). As the Si/Al ratio increased, the cracking rates per
weight of the catalyst also increased, while the activation energy
remained constant. TGA and magic-angle spinning nuclear mag-
netic resonance (MAS-NMR) analysis revealed that the number of
BAS increased in the order of Si/Al ratio of 2.6, 3.3, and 3.6, while
the number of isolated BASs, which tended to be stronger acid sites
than the paired ones, was in the reverse order. Therefore, it was con-
cluded that the difference in cracking rates is attributed purely to
the number of strong isolated BASs that take part in the reaction.

Another way to control the BAS location is the co-doping of
other 3+ ions. The deliberate placement of a certain amount of
BAS in the rings with the specified size and channels is key to the
selectivity of the desired reactions. Cui et al. used a boron (B)-
modification method in high-silica hierarchically structured ZSM-
5 zeolite (HSZ) to control the distribution of framework Al [32].

Table 1. Summary of computational approaches on evaluation of isolated & paired BAS

Methods Representation Zeolite
framework(s) # of structures Calculated

properties References

QM/MM
(ONIUM) Cluster H-FER 22

aEsub

DPE [25]

DFT
(PBE) Periodic H-FER 57

b
SiOAl

c
OH

d
Erel

[26]

DFT
(RPBE) Periodic CHA 372

DPE
DHE

NH3BE
[28]

MM
(SLC potential) Periodic 209 different

frameworks ~43,000

eEFramework,
T-site density,

TOT
[29]

aSubstitution energy, bSi-O(H)-Al angle, cO-H stretching frequency, dRelative binding energy, eRelative framework energy

Fig. 6. Arrhenius plots of monomolecular cracking of propane over
Y(2.6) (rectangle), Y(3.3) (circle), and Y(3.6) (triangle). Re-
printed with permission from [31]. Copyright (2007) Elsevier.
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Four zeolites with different B/Al ratio of 0, 3, 7, and 9 were synthe-
sized using the steam-assisted crystallization (SAC) method, and
the elemental content and acidity were measured by inductively
coupled plasma optical emission spectrometry (ICP-OES) and NH3

temperature-programmed desorption (NH3-TPD), respectively.
Cracking of 1-hexane was considered an excellent probe for locat-
ing the Al distribution. Al was more selectively located in the nar-
row straight/sinusoidal channels in samples with B/Al ratio of 7
and 9 than those of 0 and 3, and such placement of Al in the for-
mer samples promoted the methanol to olefin reaction cycle and
elongated catalyst lifetime. This study demonstrates that synthesis
methods such as boron modification can lead to a change in the
framework Al distribution, which in turn affects the catalytic activity
of the zeolite.

The distribution of Al atoms can also be controlled by the type
of organic species used in the synthesis process. Park et al. synthe-
sized ZSM-5 zeolites using two different organic species in a syn-
thetic gel: tetrapropylammonium (TPA) cations and Na cations
with pentaerythritol (PET, Na) [33]. The cracking of 1-octene was
conducted over two ZSM-5 catalysts, and the activity was com-
pared using the hydrogen transfer coefficient (HTC) and cracking
mechanism ratio (CMR). The distribution of Al atoms and acid
sites was estimated by MAS-NMR and constraint index (CI). They
suggested that the Al of [PET, Na] was mainly located inside the
10-ring channels, while that in [TPA] was at the intersection be-
tween the channels, indicating that the distribution of Al atoms is
well regulated by the organic species of the synthetic gel. [PET, Na]
exhibited better catalytic activity and less coke formation, leading
to durability than [TPA]. This work shows that a zeolite’s catalytic
performance and durability for coke formation is substantially influ-
enced by the location of the acid sites.

Similar work has also been reported by Di Iorio et al., where
the specific location of BAS could be synthetically controlled [34].
CHA zeolites with isolated Al sites could be synthesized using
N,N,N-trimethyl-1-adamantylammonium cation (TMAda+) as an
SDA. When cations with high charge density, such as Na+, were
used in conjunction with TMAda+ with a fixed total cation con-
tent, additional BAS could be incorporated in the same 6MR with
the isolated site. Depending on the amount of Na+ used, up to
44% of Al could be placed in the paired positions, defined as (Al-
O(-Si-O)x-Al) with (x2). Such characterization was conducted
with divalent cobalt ion titration method. In the case of methanol
dehydration to dimethyl ether, the first and zero-order methanol
dehydration rate constants were ten times higher for the paired
sites than for the isolated sites.

It is difficult to exactly locate Al atoms, especially when com-
plex synthesis methods are involved. Sastre et al. used force-field
atomistic simulation to determine the Al distribution in ITO-7, in
conjunction with experiments [35], where ITO-7 was synthesized
with C14H26NOH as the OSDA. Under the hypothesis that SDAs
are sterically fixed at the configuration in neutral silicate pores,
they computed relative energies for different Al sitings and BAS
positions and found that the ensemble-averaged OH with SDAs
included was close to that of IR experiments. When the SDA was
excluded, only one hydroxyl band appeared, as opposed to the case
where the SDAs were included (Fig. 7).

DEALUMINATION

Dealumination occurs when severe conditions such as high
temperature and low pH are applied to the aluminosilicates, whether
post-processing reaction or catalytic regeneration process. Al atoms
at T sites are dealuminated via acidic or hydrothermal reactions,
where acids or water molecules interact with the aluminosilicate
framework to break the T-O bond, respectively.

Although dealumination caused the loss of BAS and conse-
quently the catalytic activity [36], it is often carried out intentionally
as a post-synthetic treatment of zeolites to enhance the framework
stability and resistivity to coke formation. Although statistical aver-
aging methods have yet been implemented in dealuminated and
consequently defect-induced zeolites, dealumination has taken place
as a major post-processing method that possibly alters Al siting
and composition, and thus, some recent works on this topic are
introduced for the sake of completeness.

Inagaki et al. applied vapor-phase TiCl4 treatment on ZSM-5 at
600 oC [37] and combined QM/MM calculations with Al MAS-
NMR measurements to probe the distribution of the Al sites. After
the post-synthtic treatment, Al NMR peak moved from 55 to
52 ppm, indicating that the selective dealumination of the frame-
work Al species occurred at 55 ppm. The measured FT-IR spectra
with pyridine adsorption on the samples indicated Ti/ZSM-5(600)
had weaker acidic strength than the parent ZSM-5, attributed to
the TiCl4 treatment reducing the number of strong BAS. Conse-
quently, Ti/ZSM-5(600) showed lower conversion for both ethylene-
to-propylene reaction and cumene cracking than the parent ZSM-
5, while the stability of the samples increased, as can be seen in
Fig. 8.

Korányi et al. presented a theoretical model using the periodic
building unit (PBU) [38]. Although no simulations were conducted,
they evaluated the effect of Al siting after dealumination using
MAS-NMR spectroscopy and cross-polarization (CP) measure-

Fig. 7. The calculated force field concerning the Boltzmann aver-
aged OH frequencies in H-ITQ-7 without (top) and with (bot-
tom) SDA. Reprinted with permission from [35]. Copyright
(2002) American Chemical Society.
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ments. The NMR signal intensities of zeolites with various Si/Al
ratios were decomposed to the contributions from Si(nAl) and
Si(OH)x sites to predict the concentration of Al siting and defected
sites, respectively. By building the PBUs of MOR (12 atoms) and
beta (BEA, 16 atoms) zeolites under the assumptions that only cer-
tain configurations of PBU, namely twin (two Al per PBU), lone
(one Al per PBU), and silicate are energetically favorable, they cal-
culated the concentration of each distinct site in the PBUs and
compared the results with the NMR intensity peaks to show that
the dealumination process occurred in both twin and single Al
PBUs. This work corroborated the effectiveness of the method that
theoretically built a picture of Al siting and suggested that the pre-
viously reported hypothesis for the involvement of only two by
two Al siting in dealumination should be revised.

Although the exact Al siting after dealumination is still elusive,
recent studies have uncovered the mechanism behind the dealu-
mination process. Stanciakova et al. addressed the hydrothermal
dealumination process in a model system of ZSM-5 using periodic
DFT calculations [39] and reported four possible reaction mecha-
nisms whose kinetics were dependent on temperature and partial
pressure of water. When three different motifs of Al positions were
compared, the accessibility of the substituted site was found to be a
more important factor for the stability than the Al-O bond strength,
with aluminum atoms in straight channels being the most stable.

QUANTIFICATION OF Al DISTRIBUTION THROUGH 
EXPERIMENT AND SIMULATIONS

Though the thermodynamic distribution of Al within frame-
works can be calculated by simulations, the computed evidence
must be linked to experimental observations to validate its effec-
tiveness. The quantity and existence of different site distribution

can be measured via spectroscopic methods. Many different appli-
cations have been developed in utilizing Si and Al magic angle
spectroscopic (MAS NMR) chemical shifts. The most direct ap-
proach to gain insight into specific Al T-site distribution is using
DFT to calculate analogous theoretical chemical shifts for each T
site or pairs of T sites. Allocating the experimental peaks to that of
DFT calculated peaks, the specific local environment of each Als
can be determined. The chemical shifts then can be used to obtain
distribution of sites in experimental catalysis.

Measurement and calculation of vibrational frequencies can be
used to distinguish different Al distribution patterns. For example,
Sklenak et al. distinguished three possible paired Al sitings of cat-
ionic sites [40]. Using Co and Cu exchanged FERs, NO stretching
frequencies were determined via experimental FTIR spectroscopy
and theoretically with DFT and MD calculations. NO molecules
are common probes for analyzing local environments of their
adsorbents which are the exchanged Co and Cu species in this
case. Three AlO-(SiO)2-Al sequences in different 6MR environ-
ments were investigated for cationic exchange where other possi-
ble sites and Al sequences were neglected with low energetic pre-
ference and experimental evidence of non-existence in 29Si MAS
NMR results [41]. Interestingly, when NO frequencies were obtained
from DFT relaxed structures for Cu exchanged FERs, the stretch-
ing frequencies could not be properly assigned to their experimen-
tal counterpart, which is attributable to the fact that the exchange
of metal ions induces structural rearrangement of 6 MRs depend-
ing on the Al placement, and the discrepancies disappeared only
after molecular dynamics simulations were applied. This example
shows that after proper treatment, theoretical calculations can be
used in conjuncture with experimental FTIR data for detecting Al
distribution. Similar works that utilized 27Al MAS for the quantifi-
cation of Al siting preferences in T sites, depending on the crystal-
lization process, have also been reported [42]. A more detailed
review of the methods integrating experimental observation with
computational methods can be referred to as the reference [43].

EVALUATION OF EXPERIMENTAL DATA

Computer-simulated atomistic calculations can be more firmly
linked to experimental data by statistical averaging. Some reported
works focused on the evaluation of experimental data and deep-
ened our understanding of what experimental analysis can pro-
vide by altering the common perceptions of several experimental
properties.

Jones and Iglesia challenged some of the experimentally meas-
ured properties that were commonly perceived as indicators of
acidity [44]. They calculated the most stable hydrogen location,
ensemble-averaged DPE values, OH, Si-O-Al bond angle, and am-
monia heat of adsorption for all the structures of different Al sit-
ing in six different zeolite frameworks. The vast amount of calcu-
lations in their work showed that the variation in DPE values was
insignificant between the six different zeolite frameworks. The
ensemble-averaged DPE values were largely uncorrelated to the
rest of the properties obtained, and the DPE values were correlated
to the geometric/steric effects that promote the reaction via the relax-
ation of the transition phase. More specifically, the OH, Si-O-Al

Fig. 8. Hexane conversion and product yield (C-%) for hexane crack-
ing over original and steam processed zeolites. The reactions
were carried out (a) without catalysts and with (b) parent
ZSM-5, (c) AT-ZSM-5, and (d) Ti/ZSM-5(600). Reprinted
from [37]. Copyright (2020) Elsevier.
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angle, and ammonia heat of adsorption were found to be uncor-
related to ensemble-averaged DPE values, which is in conflict with
the historically common belief [45]. Meanwhile, OH showed a
correlation with the confinement factors, meaning that the stabil-
ity of the conjugate anion is a dominant factor for OH. They also
analyzed all approachable sites in H-MFI samples and found that
many of the adsorption moieties of NH3 were predominantly relaxed
by dispersion energy, in contrast to the common sense that the
heat of ammonia adsorption is substantially influenced by the acidic
strength of BAS. The accuracy of theoretical ammonia adsorption
enthalpies was corroborated by comparison with microcalorime-
try experiments.

They also refuted the claim that the correlation of NH3 adsorp-
tion energies with turnover frequencies, as reported in some experi-
mental works because the stability of transition states (TS) was
found to be significantly influenced by steric effects. Using the for-
mulation of an averaged activation enthalpy by the transition state
theory, in analog to the ensemble-averaged proton siting in their
zeolite frameworks, they found that the DPE values were indepen-
dent of the Al site location and zeolite frameworks, and thus inferred
that the difference in activation enthalpies for each case resulted
from the dispersive and H-bonding interactions of the TS config-
uration.

As discussed above, the heat of ammonia adsorption is largely
influenced by factors such as van der Waals interactions, prevent-
ing it from being used as an accurate measure of BAS acidity.
However, such adsorption measurements may still provide infor-
mation about the catalytic activity. For example, Wang et al. found
that there existed scaling relations between ammonia adsorption
enthalpy and propene methylation activation energy in metal-sub-
stituted CHA and ALPO-34 zeolites [46]. Such scaling relations
were especially useful as the H determined by computation could
be directly used for consecutive microkinetic analysis to predict
turnover frequencies. For some specific cases, the adsorption of such
probe molecules could serve as a descriptor for reactivity. Boronat
et al. [47] conducted a comprehensive study to use the measured
adsorption energy of probe molecules by calorimetry as an indica-
tor of the acidity and catalytic activity. However because many
theoretical studies have reported that deprotonation energies vary
by less than 30 kJ/mol for each zeolite, other factors such as the
confinement effect on the protonated species play an important
role [6]. They applied periodic DFT and measured the interaction
energies of adsorbed probe molecules (CO, CH4, NH3, pyridine)
with pure and single Al-incorporated MOR and ZSM-5 zeolites.
This allowed the separate evaluation of the pore size effect and
proton transfer process. Because weak base molecules might be
weakly adsorbed and fail to deprotonate hydrogen, the ZH-B neu-
tral complex was measured rather than an electron transferred Z-
HB+ state. For strong bases, the measured heat of adsorption was
not necessarily dependent on the acidity but on the steric effects;
thus, the extent to which the Z-BH+ ion pair was stabilized by
the oxygen atoms in the vicinity. Since steric effects are involved
in the adsorption of both weak and strong bases, it can be con-
cluded that probe molecules should be used for the information
about confining voids rather than evaluating the acidity of the
catalysts.

MACHINE LEARNING TO ESTIMATE THE 
CATALYTIC PROPERTIES OF ZEOLITES

Although the combination of atomistic simulation and statisti-
cal treatment has narrowed the quantitative gap between simu-
lated and experimental evaluations, computational limits still restrict
either the search space or the level of accuracy of the evaluations.
Machine learning (ML) has emerged as a solution to address such
problems in the broad spectrum of heterogeneous catalysts. While
DFT calculations only give pointwise information in parameter
space, integration of machine learning enables fast prediction on
the whole landscape, while retaining the accuracy of quantum
mechanical calculations. Statistical averaging of the vast informa-
tion from ML predictions will potentially produce a highly accu-
rate description of actual zeolite properties, with a substantially
reduced computational workload.

Despite the promising application of ML techniques to many
fields of catalysts, few studies have yet been conducted to integrate
them in the area of zeolite sciences, with the focus mostly on pre-
dicting non-catalytic properties using non-local descriptors. In this
section, some recent studies utilizing ML to analyze and discover
zeolites are summarized, along with examples of studies conducted
on other heterogeneous catalysts to depict future perspectives in
ML for zeolites.
1. Machine Learning Applied to Framework-wise Properties

Evans and Coudert used simple machine learning techniques to
predict the mechanical properties of zeolite frameworks [48]. The
DFT optimized frameworks of 121 pure silica zeolites were used
as training data to predicted logarithms of bulk and shear moduli
(log(K) and log(G), respectively) of zeolite frameworks using 32
different descriptors encompassing the local, structural, and poros-
ity of each framework. The cross-validation accuracy was shown
to be within RMSE of 0.102±0.034 and 0.0847±0.022 for log(K)
and log(G), which is an improvement compared to conventional
force field models. They then extended their model to predict
500,000 different hypothetical and real frameworks, and extract
the notion that real zeolites tend to be stiffer than the hypothetical
ones, discovering a new criterion for assessing synthesis feasibility.

Gu et al. constructed a model for nitrogen adsorption on vari-
ous zeolite frameworks using the feature learning approach to
extract knowledge of the improved representations of zeolites [49].
Since adsorption on porous zeolites strongly depends on struc-
tural accessibility as well as energetic property, the authors consid-
ered 13 input features concerning local, structural, channel-related
information. Applying Pearson correlation analysis, they built smaller
models by first removing five redandant features (eight feature
model), and further removing five highly correlated features (three
feature model). When the reduced model was applied to the data-
set of 248 zeolites, the XGBoost algorithm performed best where
the R-square value of binding energy predictions were 0.77, 0.94,
and 0.92 for the cases with 13, 8, and 3 features, respectively. The
remaining three principal features were the maximum number of
nitrogens that could be accommodated in a pore (Veff), the largest
sphere that can be included in the existing channels (PLD), and
the refinement distance least squares (RDLS) which encodes the
average distance of Si-Si, Si-O, and O-O bonds. While the initial
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dataset consisted of pure silicate frameworks, the authors applied
their three feature model to Al-containing zeolites by introducing
a scaling coefficient and demonstrated that the model can success-
fully generate adsorption isotherms similar to those obtained from
experiments.

While the strength of feature learning is that it extracts human
interpretable information, one of the important advantages of apply-
ing machine learning to chemical domains is its ability to construct
nonlinear surrogate models, by which more powerful hidden fea-
tures (which may be non-human readable) can be discovered in
the process. Helfrecht et al. used smooth overlap of atomic posi-
tions (SOAP) as local descriptors, using kernel ridge regression
(KRR) model to predict molar volume and cohesive energy of hypo-
thetical zeolite frameworks in the Deem database [50]. The method
showed marginally improved performance compared to that by
classical descriptors such as Si-Si distance and Si-O-Si angle. They
then reduced the dimensionality of SOAP descriptors through ker-
nel principal component analysis (kPCA) and used the three prin-
cipal components to construct a 3D cloud atlas of all hypothetical
zeolite frameworks, with the power of representing diverse struc-
tural motifs in the database.
2. Local Descriptors for Zeolite Representation

While the previously mentioned models used information of
each zeolite framework to predict general framework-wise proper-
ties, many machine learning and deep learning approaches built
the models that encoded local site information to predict the prop-
erty specific to local activity. In this respect, the representation of
atomic and bond-wise information for crystals, molecules, and
adsorbates has been a key factor for researchers. Over the years,
simple descriptors such as generalized coordination numbers (GCN)
and orbital-wise coordination numbers have been proposed to
successfully predict adsorption energy in simple metallic catalysts,
even without machine learning techniques [51,52].

However, such descriptors are limited to description of surfaces
of metal catalysts, and demand for more general models applica-
ble to wider domains has existed. Machine learning-based models
can utilize the descriptors based on more detailed information,
especially the local information, and many approaches have been
developed for heterogeneous surfaces. Meanwhile, to our knowl-
edge, only SOAP descriptors have been applied to zeolites because
the representation of zeolites is potentially more complex than other
heterogeneous catalysts; in other words, the active sites are within
three-dimensionally surrounded frameworks. For example, it is
hard to predict the energetics of adsorption on each site because
adsorption energies are closely linked to not only the very adja-
cent atoms but also the ring and pore atoms which may interact
with the adsorbate by van der Waals force. Likewise, the complex-
ity in the structure of zeolites makes the prediction of activation
energy substantially complicated, as the accommodation of transi-
tion states in pores becomes even more important. Therefore, a
novel representation that can consider not only the local but also
the 3D structural environment around the active site must be
developed.

Graph representation methods, where nodes and edges are used
to encompass atomic information (atomic numbers, electronega-
tivity, etc.) and the relations between atoms (bond length, type),

respectively, have been shown to be appropriate to estimate bulk
[53], surface and adsorption properties [54,55]. Graph representa-
tions utilize graph convolutional networks, also known as the mes-
sage passing networks, where information of each node is passed
as ‘messages’ to the connected nodes in each convolution, making
each node collate information of its nth neighbors. Graph meth-
ods may apply to the prediction of interactions between the zeo-
lite framework and small molecules in large rings where interpore
interactions are negligible. For more general application at the
existence of interpore interactions, modification of current mod-
els might be needed by taking the hydrogen bonds and van der
Waals interaction into account. While current models use various
methods such as distances and Voronoi solid angles to encode
bonding information, expansion of edge properties to subtle inter-
actions may be needed or implemented by a separate model.

To encode 3-dimensional information, kernel methods such as
SOAP can be used to analyze local environments, by using kernel
distances as a measure of similarity between the atomic neighbor
environments. SOAP uses the expansion of atomic density to express
local geometries in a smooth and transformation invariant form,
using Gaussian neighbor density. One of the advantages of SOAP
is that different atomic environments can be compared by con-
structing normalized matrix multiplications for kernel distance
between each environment, and learning only the weights on each
kernel. SOAP has been applied to the development of machine
learning potential for a variety of applications, including the pre-
diction of silicon surface reconstruction, molecular atomization
energy on the QM7b database, and framework-wise property of
zeolites, as introduced in the preceding section [50,56].

Recently, Kajita et al. proposed to use 3D voxels for represent-
ing atomic positions of solid state meterials [57]. For periodic mate-
rials, a cell can be transferred to reciprocal space using Fourier
transformation, as used in DFT methods. The use of reciprocal
space solves many problems in representing periodic materials,
such as translational invariance, unit cell selection, and atomic label
commutation. The one remaining problem of rotational invari-
ance can be solved by data augmentation, simply including vari-
ous rotated structures of the same material in the dataset. Because
the descriptor is inherently similar to pixel data, algorithms such
as convolutional neural networks (CNN), originally developed for
machine vision purposes, can be directly applied. 3D voxels have
been applied to generation and screening of stable oxide struc-
tures when used along with generative models.

As zeolites are highly periodic, the use of voxels can potentially
be beneficial in determining zeolite catalytic properties. When addi-
tional fast optimization methods such as MM, or recently devel-
oped machine learning optimizers are used along with 3D voxels,
more accurate initial positions can be generated [58], increasing
the practicality of the method.

CONCLUSIONS

This review depicts the recent developments in the field of zeo-
lite sciences, with emphasis on computational methods to explain
and supplement experimental analyses. The importance of Al and
BAS distribution has been discussed via the reviews on the reported
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works by showing that computational methods, more specifically
statistical averaging, have estimated thermodynamically preferen-
tial Al siting and discovered the consequent effects of BAS distri-
bution. Computational studies to evaluate the effects of paired Al
sites have been conducted for different zeolite frameworks exten-
sively, and have successfully described the generalized properties,
indicating that theories are expected to play a useful role in designing
a zeolite with the desired Al distribution, in collaboration with
experimental works. However, many studies are limited to the
information on the selected zeolites of interest, and the knowledge
of different zeolite frameworks and their catalytic performance has
been accumulated in a fragmented fashion.

Despite the great improvement in computational studies, fur-
ther developments are still needed to incorporate the synthesis and
deactivation of zeolites, as the crystallization process and defect
creation are yet to be fully understood or modeled. Data-driven
methods are creating new paradigms, and the analysis of different
zeolite structures is now possible. While the current focus has been
limited to very simple properties such as DPE and vibrational fre-
quencies, more complex properties such as adsorption and reac-
tion of C1 and C2 molecules need to be predicted to effectively
discover novel catalysts, via the simplification of search space in
terms of either the catalyst framework or adsorbate molecules. This
can be accomplished by finding general structure-activity relation-
ships in catalyst frameworks or adequate reactivity descriptors in
adsorbate molecules.

Overall, future trends are directed toward a more extensive
computational search along with its integration with experimental
studies, to understand the governing mechanism of zeolites and
design better ones. Execution of computational search seems promis-
ing by integrating ML techniques to accelerate and widen the pos-
sible search domains.
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