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AbstractThe onset of miscible viscous fingering in porous media was analyzed theoretically. The linear stability
equations were derived in the self-similar domain, and solved through the modal and non-modal analyses. In the non-
modal analysis, adjoint equations were derived using the Lagrangian multiplier technique. Through the non-modal
analysis, we show that initially the system is unconditionally stable even in the unfavorable viscosity distribution, and
there exists the most unstable initial disturbance. To relate the theoretical predictions with the experimental work, non-
linear direct numerical simulations were also conducted. The present stability condition explains the system more rea-
sonably than the previous results based on the conventional quasi-steady state approximation.
Keywords: Viscous Fingering, Non-modal Analysis, Modal Analysis, Linear Stability Analysis, Direct Numerical Simulation

INTRODUCTION

Miscible viscous fingering which deforms parallel viscosity con-
tours into fingerlike patterns occurs in porous media when a less
viscous fluid displaces another miscible, more viscous fluid, i.e., vis-
cosity increases along the direction of propagation [1]. This inter-
esting phenomenon plays an important role in many engineering
fields, such as enhanced oil recovery, pollution spreading in soils,
chromatographic column design, and so on [2-7]. Also, viscous fin-
gering is important to understand how gastric mucin protects gas-
tric epithelium from strong HCl in mammalian stomachs [8,9]. To
analyze the onset and evolution of viscous fingering many research-
ers have studied experimentally and theoretically.

By using X-ray imaging, Slobod and Thomas [2] and Perkins et
al. [3] determined the onset and the evolution of the miscible fin-
gering experimentally. They showed that in the high flow rate run
fingers are present and absent near the injection region in the low
flow rate run. Their experimental results mean that there is a sta-
ble region even if the viscosity distribution is unfavorable. Its sta-
bility characteristics are influenced by the viscosity distribution and,
also, the flow rate. Further evidence of fingering has been reported
by using nuclear magnetic resonance (NMR) imaging technique
[10], optical method [11], and echo-planar spectroscopic imaging
method [12]. First theoretical analysis was conducted by Tan and
Homsy [4], based on the quasi-steady state approximation (QSSA).
They suggested that the unfavorable viscosity distribution makes the
system unconditionally unstable and induces viscous fingering insta-
bility. Their QSSA has been used as a standard method to analyze
the related problems [13-16]. Although the validity of QSSA can be
guaranteed for the region of (=R2U0X/D)>>1, here R is the log-

viscosity ratio, U0 is the uniform injection velocity, D is the isotro-
pic dispersion coefficient and X is the streamwise distance, many
researchers [13-17] applied the QSSA even for 0, i.e., they con-
ducted the initial growth rate analyses under the QSSA. To com-
pensate the QSSA results, Tan and Homsy [4,18] conducted transient
analyses by solving the same problem using initial value (IV) prob-
lem methods, where they introduced random noise as an initial
condition and monitored its growth. They showed that the distur-
bances under the unfavorable viscosity distribution have a large
negative growth rate during the early stage of displacing.

Although the above-mentioned theoretical analyses gave some
insights into the onset of viscous fingering in the miscible system
qualitatively, direct quantitative comparison between the experi-
ments and theoretical analyses has not been tried. Also, the follow-
ing fundamental questions still remain in connection with the onset
of fingering motion: (1) what kind of initial disturbance, if any,
occurs? (2) where can the instability motion be observed experi-
mentally?

To answer the above questions, we analyzed the onset condition
of viscous fingering using linear stability analysis and nonlinear
numerical simulation. To find the most practical initial condition,
we derived new linear stability equations in the self-similar domain.
By applying non-modal analysis based on the Lagrangian multi-
plier technique (Doumenc et al. [19]) into the present system, we
derived additional adjoint equations. By solving the stability equa-
tions and their adjoint ones iteratively we identified the most prac-
tical initial condition, and traced its temporal evolution. In section
4.2, the present non-modal analysis is compared with the present
modal analysis and the generalized stability theory. Based on the
initial disturbance identified under the linear stability analysis, we
tried to answer the more practical problem, question (2), through
non-linear numerical simulations. The previous numerical simula-
tion results [6,18] showed that there exists a position where dis-
persion length Ld starts to deviate from the theoretically obtained
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value. However, in the present study we considered the mass flux,
J, across the initial phase boundary, and considered m at which
dJ/d=0 as an onset position of non-linear viscous fingering. Also,
we compared the theoretically obtained m with the previous exper-
imental data.

GOVERNING EQUATIONS AND BASE SYSTEM

If one Newtonian fluid displaces another miscible Newtonian one
with the uniform velocity U0, as schematized in Fig. 1, the govern-
ing equations consisting of the Darcy law and mass transport equa-
tion in the Lagrangian coordinate system moving at the injection
velocity U0 can be expressed as [4,6]:

(1)

(2)

(3)

where (C) is the concentration dependent viscosity, K is the con-
stant permeability and i is the unit vector along the main flow di-
rection, t is the time and  is the isotropic dispersion coefficient.
Here, we assume that fluids are neutrally buoyant and the viscos-
ity-concentration relation has the following form:

(4)

with the constant log-viscosity ratio R{=ln(b/a)} [4,6,14,16].
In dimensionless form, the above equations can be rewritten as

(5)

(6)

(7)

where the velocity, pressure, viscosity and solute concentration are
nondimensionalized as u=U/(RU0), p=K(PP0)/(b), =/b

and c=(CCb)/(CaCb), respectively. Here P0 is an arbitrary refer-
ence pressure. We use the characteristic length /(RU0) and /
(RU0

2) time. The subscripts ‘a’ and ‘b’ mean the displacing phase and
the displaced phase, respectively. Then, Eq. (4) can be rewritten as

(8)

We use RU0 rather than U0 in the above velocity disturbance, length
and time scaling relations, because the instabilities are driven by
the velocity, U0, and the viscosity contrast, R.

The base concentration profile is governed by

(9)

under the following initial and boundary conditions:

c0(0, x)=1H(x), (10a)

c0(, )=c0(, )1=0, (10b)

where H(x) is the Heaviside unit step function. Using the Laplace
transform method, Eqs. (9) and (10) can be solved as

(11)

where (=x/ ) is the similarity variable and x=0 is the initial inter-
face position.

LINEAR STABILITY ANALYSIS (LSA)

1. Stability Equations
Under linear stability theory, by perturbing Eqs. (5)-(7), the sta-

bility equations are derived as

(12)

(13)

where the subscripts ‘0’ and ‘1’ mean the basic and disturbance quan-
tities, respectively. Here, we linearized the viscosity function as

(14)

Using the Fourier mode analysis, the above equations are reduced as

(15)

where k is the wavenumber showing spanwise periodicity. The
proper boundary conditions are

 U  0,

P   
 C 

K
----------- iU0  U ,

C
t
-------  U C   C ,

  bexp  R
C  Cb

Ca  Cb
----------------- 

 ,

 u  0,

p    u  
i
R
--- 

  ,

c

-----  u c  2c,



    Rc .exp

c0


-------  

c0

x2
-------,

c0 , x   
1
2
--erfc 

2
-- 
  ,



2u1 
1
 0
-----
 0

x
--------u1

x
--------  

1
R
--- 1
 0
-----1

2 1,

c1


-------  u1

c0

x
-------  2c1,

 c0   c1   0    1  Rc0    

c
------

c0

c1.exp



-----  

2

x2
-------  k2
 
  c0

x
-------

 k2 2

x2
-------  R

c0

x
------- 

x
-----  k2

c1

u1

  
0
0

,

Fig. 1. Schematic diagram of the system considered here.
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c10 and u10 as x±. (16)

In the present study, since the base concentration field can be
expressed by using the similarity variable , we express the distur-
bance equations in the (, )-domain as

(17)

under the condition of

c10 and u10 as ±. (18)

where , k*=k  and .

Keep in mind that Eqs. (15) and (16) and Eqs. (17) and (18) are
mathematically equivalent except for the singular limit =0. Also,
some other researchers have used this kind of coordinate trans-
form in similar problems [20-24].
2. Spectral Expansion

In the original (, x)-domain, the spectral expansion described
in the present section is not possible because the eigenfunctions of
the operator d2/dx2 cannot meet the boundary conditions (16).
Therefore, further analytical approach without the quasi-steady
state approximation (QSSA) is not possible in the (, x)-domain.
Here, by following Kim and Choi’s [25-28] approach, the linear
stability equations, (17) and (18), were solved by a spectral method
in the (, )-domain. Using the generalized Fourier series c1 and u1

are expressed as

(19)

(20)

The solutions of n() and n() are fully discussed in Kim and
Choi [25-28]. For the limiting case of R<<1, the stability Eqs. (17)
and (18) become parameterless and can be attacked analytically.
Note that for this limiting case, Kim [28] expressed n() as a recur-
sive relation. This is another reason why we use RU0 rather than
U0 as a proper velocity scale.

Applying these solutions into Eq. (17) and performing orthogo-
nalization process, we obtain the following equations:

(21a)

(21b)

(21c)

Kim [28] showed that for the extreme case of R<<1, the matrix E

is symmetric since 

3. Non-modal Analysis (NMA)
In the non-modal analysis, we should consider all the possible

initial conditions, which gives a maximum gain at the optimiza-
tion position f. Thus, we should find the initial ai which gives the
maximum gain G*(; i) defined as

(22)

Also, based on this quantity, we defined the growth rate as

(23)

In the present study, we solved this optimization problem using
the Lagrangian multiplier technique suggested by Doumenc et al.
[19]. Following their procedure, we formulated the Lagrangian in
the (, )-domain as

. (24)

where  and D=/. The second term of

the right hand side is the constraint such that , s is a scalar

Lagrangian multiplier, the adjoint variables  and  are the Lagrang-
ian multipliers dependent on  and . It is known that fc()=exp(2/
4) and fu(x)=exp(Rc0) are the weight functions of the operators

 and , respectively. The above Lagrangian leads to

      . (25)

In the present study the optimal condition was assumed such
that the variation of the Lagrangian is zero: =0. This means that

. (26)

 
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-------
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



u1 ,     An  n  .
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


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
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 1
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








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
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
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1
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----------  
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4
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After performing the integrations by parts, the following relation is
obtained:

.

. (27)

We chose c1 and  which satisfy the boundary conditions for c1,
and u1 and  which satisfy the boundary conditions for u1. Then
the fourth and fifth terms become zero. The optimality conditions
are met if  and  satisfy the following adjoint problem:

(28)

(29)

(30)

(31)

Here, Eq. (29) should be integrated from f to i.
By setting =  and =  the adjoint equations reduce to

(32)

under the following boundary conditions:

0 and 0 as ±. (33)

Eq. (30) gives the coupling conditions to connect the stability prob-
lem (17) and (18) and its adjoint problem (32) and (33) as

2sc1=  at =i, (34a)
2c1=  at =f. (34b)

The above Eqs. (32) and (33) are rewritten in the (, x)-domain as

(35)

and

0 and 0 as x±. (36)

By expressing  and  as

(37)

(38)

we can get the following relations:

(39)

under the following boundary conditions

0 as ±. (40)

Similar to Eq. (25), the solution of the above boundary value prob-
lem can be given as

(41)

where  is the Green’s function of the adjoint problem.
Applying these solutions into Eq. (32) and performing orthogo-

nalization process, we obtain

(42a)

(42b)

(42c)

For the limiting case of R<<1, where fu()1, and therefore =E,
the above adjoint equation becomes

(43)

In summary, the present non-modal analysis is to find the most
unstable disturbance satisfying Eqs. (21) and (43) under the fol-
lowing coupling conditions:

a=  at =i and =f, (44)

which corresponds to Eq. (34). For the limiting case of R<<1, the
optimal initial condition is independent of the optimization posi-
tion f and =a should be satisfied because the stability equation
and its adjoint are identical. Furthermore, the improvement of the
initial condition through the adjoint equation cannot be expected
for the limiting case of R<<1. For the finite R, we should depend
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Êij   i1 k*2 ij  


2 
----------k*2

 i1   fu  /fu   G ,  j1  dd.











Ê
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on the numerical method, which will be discussed later.
4. Modal Analysis (MA)

In the modal stability analysis, the growth rate is determined by
the maximum value of the eigenvalues of E in Eq. (21):
*=max{eig(E)}. (45)

The same results can be obtained from the quasi-steady state approx-
imation (QSSA) in the (, )-domain [23,24]. Here, we assume
that the spatial-temporal dependencies can be separable as:

(46)

which corresponds to . Now, the stability equation is re-
duced to
*a=Ea, (47)

and the growth rate can be obtained from *=max{eig(E)}. The
element of matrix E can be obtained by the procedure described
in the above section. Because the growth rate from Eq. (47) is iden-
tical with Eq. (45), both approaches give same stability characteristics.

As discussed in the above section, for the case of finite R the
calculation of the matrix element is not straightforward. So, under
the QSSA we reduce the stability equations to

(48)

where D=d/d. The proper boundary conditions are
0 and 0 as ±. (49)

We solve the above equations with the well-known numerical shoot-
ing method [29]. The neutral stability curves obtained by setting
*=0 are compared in Fig. 3. As shown in this figure, third ap-
proximation (3-term approximation) is quite enough to explain the
stability characteristics.

Farrell and Ioannou [30] suggested a slight modification on the
QSSA. According to their idea for the non-autonomous system, the
growth rate * can be expressed as

(50)

since . Through the basic matrix operation, the above
growth rate is reduced to

(51)

All symmetric matrices are normal and all eigenvalues of the nor-
mal matrix are all real. Through the eigen analysis it is known that

(52)

where max{eig(M)} represents the maximum eigenvalue of the
matrix M. For the extreme case of R<<1, since E=ET, the growth
rate is further reduced to

(53)

which is identical with the result from the QSSA, see Eq. (47). In
Fig. 2, the neutral stability curve based on the generalized stability
theory (GST) is compared with that based on the QSSA for the
case of R=3. This figure suggests that the GST yields slightly more
unstable disturbance than the QSSA in the (, )-domain.

NUMERICAL SIMULATIONS

The previous analytical analyses give some information on the
onset of miscible viscous fingering. However, the long-term flow
behavior such as the growth and amplification of onset disturbances
is governed by nonlinear disturbance dynamics. We solve Eqs. (5)-
(7) with a numerical method and compare nonlinear numerical
simulation results with those from the analytical analyses.
1. Formulation

By taking double curls on Eq. (6) and with the aid of Eq. (5),
the velocity field can be reduced to

(54)

(55)

The convection-dispersion equation can be expressed as

(56)

(57)

In the 2-dimensional (x, y)-domain, the governing equations for
velocity and concentration fields can be reduced to

(58a)

(59a)

(60)
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Fig. 2. Neutral stability curves from the various methods.
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(61a)

(62)

Here, we decompose the concentration field as
c(, x, y)=c0(, x)+c1(, x, y), (63)

and c0(, x) is already given in Eq. (11).
To solve Eqs. (58)-(62), we employ the Fourier-spectral numeri-

cal scheme described in Zimmerman and Homsy [32]. The peri-
odic boundary conditions are taken in both the x- and y-directions.
The use of these boundary conditions has no influence on the
dynamics of the concentration front as long as the unstable propa-
gating front does not encounter its periodic extension.
2. Linear Non-modal Analysis

As discussed in section 3.2, fully analytical approach is possible
only for R<<1. However, in case of finite R, i.e., non-normal sys-
tem, we cannot guarantee that the first eigenmode is the most
unstable initial disturbance. It is well-known that for a non-nor-
mal system, an initial disturbance can grow in time even though
all the eigen-modes of the system are damping [33]. Here, for the
finite R system, we try to identify the optimal initial condition by
solving linearized stability equations and their adjoint ones, numer-
ically. In the linear analysis the vorticity and convective flux defined
in Eqs. (60) and (62) are degenerated as

(64a)

(65a)

Also, from adjoint Eqs. (35) and (36), the adjoint forms of the above
quantities can be written as

(58b)

(59b)

(61b)

(64b)

(65b)

Note that for the limiting case of R<<1, the above two sets of equa-
tions are identical. Here, the magnitude of the disturbance |c1| is
defined as

(66)

Based on this quantity, we define its gain G(; i) and growth rate
 as

(67)

and

(68)
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Fig. 3. Results of non-modal analysis: (a) Effect of initiation time on
the shape of an optimal initial condition, (b) comparison of
the temporal evolution of optimal disturbances in physical
and adjoint problems, and (c) comparison of the growth rates
from the various methods.
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The growth rates * and  can be related as [24,34]

(69)

For the limiting case of R<<1, Kim [27] showed that c1(, )=
A0()0() is the optimal initial condition.

For the finite R system, the present numerical scheme is used to
find out the optimal initial disturbance by solving the linear stabil-
ity equations (58a), (59a), (61a), (63a) and (65a) and their adjoint
ones, (58b), (59b), (61b), (64b) and (65b). To determine the opti-
mal initial disturbance giving the maximum amplification of the
disturbance, following Doumenc et al.’s [19] approach, we integrated
the stability equations, forward to =f, using the initial guess for
c1 at =i. Then, using the coupling condition, they obtained the
final conditions for the adjoint equations. They integrated the adjoint
equations backwardly to =i. The newly obtained initial condi-
tion for the adjoint equation was used for the improved initial
conditions for the stability equations. We used =0(i) as a start-
ing point and continued the above procedure until a predeter-
mined convergence criterion, <103 was achieved.

For the case of R=3 and k=0.05, the effect of initiation time on
the optimal disturbance is summarized in Fig. 3(a). Fig. 3(b) shows
that the optimal disturbance is insensitive to the initiation time, i,
the optimization time, f, because the gains obtained from by solv-
ing physical and adjoint problems are nearly the same for the
whole time range. Also, the optimal disturbance is not affected by
the wavenumber of the disturbance k. The growth rates of the pres-
ent optimal initial condition are compared with the present GST
and QSSA in Fig. 3(c). This figure shows that the present modal
and non-modal analyses give the nearly same growth rate and,
therefore, support each other. Furthermore, the optimal disturbance
seems not to be influenced by the driving force, R, as shown in
Fig. 4.
3. Direct Numerical Simulation (DNS)

In the previous analyses, the wavelength of the disturbances is
fixed throughout the simulation. However, the wavelength selec-
tion and the nonlinear phenomena such as mixing and mass trans-
fer rate enhancement, the break of symmetry, and the widening of

fingering structures are not possible in the linear single-mode anal-
ysis. In this section, the calculation domain is set to [0, 2000]×
[1000, 1000], and 2048×2048 collocation points are used. Unlike
the linear MA, the initiation condition is important in the nonlin-
ear analysis. Since the linear stability analysis cannot suggest the
dominant initial wavenumber in the present simulation, the fol-
lowing initial condition is employed:

c1=(i) rand(y) at =i, (70)

where  means the initial disturbance level, (i) is the optimal ini-
tial disturbance determined in the previous NMA and rand(y) is the
pseudo-random number uniformly distributed between 1 and 1.
This condition prevents unphysical conditions of c>1 or c<0, if 
is small enough. For the region of ~0, the base concentration gra-

dient (~(x)) shows non-analytic feature and leads to bad con-

vergence properties. For this reason, at all the non-linear numerical
simulations the disturbance given in (70) are introduced at i=0.1.

Since we are interested in the enhancement of mixing or mass
transfer driven by the instability motion, the mass flux is examined
here. The dimensionless vertical mass flux at the initial front x=0,
J, which can be written as the sum of contributions from the base
diffusion state, J0, and the convective motion, J1:

J=J0+J1. (72)

The diffusional flux can be computed explicitly from the base con-
centration profile as

(72)

The vertical convective flux is calculated from the horizontal mean
of the vertical gradient of c1 at x=0 as [35]

(73)

The effect of the random number sequence on the convective
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Fig. 4. The effect of R-values on the optimal disturbance.
Fig. 5. The effect of the random sequence on the temporal evolution

of the total flux for the typical case of R=1, i=0.1 and =0.01.
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flux is summarized in Fig. 5. As shown, the random number se-
quence has little effect on the convective flux. To consider the
effect of the amplitude of the initial disturbance on the total flux J,
the convective flux J1 for three different simulations for R=1 is shown
in Fig. 6. Regardless of the magnitude of the initial disturbance,
during the initial period diffusion dominates over convection and
the disturbances remain in the linear region. From Figs. 5 and 6,
we can define two characteristic times c at which dJ1/d=0 and
m at which dJ/d=0. Note that c from which the convective flux
starts to grow is insensitive to the initial condition, whereas m from
which the nonlinear terms begin to dominate is strongly depen-
dent on the initial disturbance magnitude. Furthermore, the result
for the case of =0 follows the diffusion state. This means that the
present instability motion is driven by the physical disturbance rather
than the numerical errors. However, for a real physical system it is
difficult to characterize the amplitude and shape of initial distur-
bances. From now on, we use Eq. (75) with i=0.1 and =0.01 as
an initial condition.

RESULTS AND DISCUSSION

Most of the previous studies introduced the quasi-steady state
approximation in the (, x)-domain (QSSA) or frozen-time model
[4-7]. However, as discussed by Ben et al. [21] and Kim and Choi
[25], the QSSA in the untransformed (, x)-coordinates are not
valid at small times, and therefore an analysis in the similarity coor-
dinates (, ) is required. The present result on the initial growth
rate, Eq. (53), and Tan and Homsy’s [4] IV calculation results show
that the system is stable, <0, in the case of <1. According to
their IV calculation, initially the system is stable for the random
disturbance and even the disturbance from their QSSA at =0.
Furthermore, the present initial growth rate study explains Slobod
and Thomas’ [2] experimental result: near the initial displacing
front (see their Fig. 1), no fingering is found in the low flow rate
experiment and a single bulging finger is observed at the far
downstream. Later Perkins et al. [3] reported, in their Table 1, the
experimentally determined critical length from which the finger-

Fig. 6. The effect of the initial disturbance level on the temporal evo-
lution of the total flux for the typical case of R=1 and i=0.1.

Fig. 7. Comparison of the onset conditions between the GST and
QSSA: (a) Critical position and (b) critical wave length. The
relation of lc(D/U0)=81.49R is obtained from Eq. (79b).

ing motion was observed. From these experimental results, there
may exist a critical length (or critical time) to develop a fingering
instability even for the case of unfavorable viscosity distribution.

As discussed in section 3.4, the validity of the QSSA depends
on the symmetricity of the characteristic matrix E. For the limit-
ing cases of R=1, it has been shown that the characteristic matrix
E is symmetric and therefore, the neutral stability curves using the
QSSA are the nearly the same as those obtained under GST, as
shown in Fig. 3. This figure also shows that the present QSSA
represents the stability characteristics reasonably well for the sys-
tem of moderate R. For the case of various R, the critical conditions
which can be obtained from the minimum value of neutral stability
curve are summarized in Fig. 7. This figure shows that the larger
R makes the system more unstable and the critical wavelength
larger. It is known that the present QSSA works quite well for the
system of moderate R and gives good approximation even for the
system of large R.

Here, let us focus on the critical conditions to induce the finger-
ing instability. To determine the critical condition the stability cri-
terion is necessary. As discussed in the initial growth rate section,
regardless of the value of R, initially * has a negative value. As the
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physical situation. Since this zero-magnitude initial disturbance of
c1=0, cannot induce the instability motion, the following physical
constraint impose an important restriction on choosing the initial
disturbance:

0(c0±c1)1 for positive small . (81)

All the physical disturbances should satisfy the above physical con-
straint.

By introducing the initial fluctuation obtained from the present
NMA rather than a random noise as a starting point for the non-
linear calculation, we conducted nonlinear DNS studies. For the
various R-values, the total fluxes and convective ones are summa-
rized in Fig. 8. Two characteristic times c and m are shown with
the linear stability analysis (LSA) result in Fig. 9. This figure sug-
gests that the growth period is required for the disturbance which
sets in at c to increase the mass flux.

The present linear and nonlinear analyses should be checked by

time increases, the convective term,  in Eq. (21c),

grows and dominates the dispersion related term, 

 in Eq. (21c), which makes the system stable.
The condition of *=0 means that two terms are in equilibrium.
Based on this, *=0 is chosen as a neutral stability condition.
Based on the results of third approximation, the critical time c

and the critical wavenumber at c can be obtained as

(79a & b)

where c is the wavelength at the onset time.
Even though linear stability analysis gives important informa-

tion on the stability of the viscous fingering system, experimental
findings such as the enhancement of mass transfer and mixing
driven by the instability are strongly dependent on the nonlinear
convection. Therefore, the onset of nonlinear convection is of con-
siderably practical importance. Employing the Fourier spectral
method, De Wit et al. [6] solved Eqs. (1)-(4) numerically by intro-
ducing random initial noise and determined the onset time. They
defined the dispersion length Ld as

(80)

and monitored temporal evolution of Ld. Here  is the lat-
erally averaged concentration. To characterize the nonlinear effect,
they defined d as the time when Ld starts to deviate from the curve
for R=0. For the range of 0.5<R<4, De Wit et al. [6] suggested the
relation d~constant, which is quite similar to the present linear
stability result, Eq. (79a). However, they did not try to relate the
linear stability analysis with their nonlinear simulation. Here, we
have defined the onset time of nonlinear convection, m, as the time
at which dJ/d=0 and tried to connect this time with the experi-
mentally determined onset condition.

In the present study, to relate the theoretical analyses and the
experimental work we conducted the non-linear DNS by solving
Eqs. (1)-(4). To start the DNS simulation we introduced the initial
condition for Eq. (3). The growth of the instability is strongly depen-
dent on motion of the initial condition. Therefore, the selection of
the physically acceptable initial condition is an important problem
to relate the DNS and the experiments. Recently, for the gravita-
tional fingering problem Daniel et al. [36] suggested that the ini-
tial disturbance localized around the base concentration front is
more physical. As shown in Fig. 4, the initial condition determined
by the present NMA satisfies Daniel et al.’s [36] suggestion; how-
ever, the initial disturbance given by the QSSA is not localized. If
the maximum of c0+c1 and the minimum of c0c1 are consid-
ered, the present initial disturbance gives max(c0+c1)1 and
min(c0c1)0 if <0.1. This means that the unphysical situation
of c>1 and c<0 does not appear if a disturbance whose initial
magnitude  less than 0.1 is imposed. However, if the most unsta-
ble disturbance identified in Tan and Homsy’s [4] QSSA is used as
an initial condition, its magnitude should be 0 to avoid the un-
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Fig. 8. The effect of the log-viscosity ratio R on the temporal evolu-
tion of the total flux for the typical case of i=0.1 and =0.01.

Fig. 9. Comparison of the predicted critical times with the experi-
mental result. For the purpose of comparison, (U0/D)=400
cm1 is assumed in the Perkins et al.’s [3] experiment.
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the systematic experiments. However, as far as we know, the quan-
titative results were suggested by only Perkins et al. [3]. They mea-
sured the average distance Xe at which the fingering is initiated
(see their Table 1). From the relation of =R2U0X/, the experi-
mentally determined critical time e can be obtained. However, the
dispersion coefficient  is a complex function of the effective dif-
fusivity De, the displacing velocity U0 and the porous matrix struc-
ture. In Perkins et al.’s [3] experimental data, Xe is independent of
U0 for the large mobility ratio. From this result, U0 can be
assumed and no further data can be obtained. For the purpose of
comparison, (U0/)=400 cm is assumed in their experiments and
their experimental e is compared with the present c in Fig. 9.
This figure shows that the present c is too short to explain the
experimental results. However, the present m predicts the experi-
mental trend quite well even though m is strongly dependent on
the initial magnitude of the disturbance and the value of (U0/).
This discrepancy is due to the growth period of the disturbances,
i.e. the amplitude of the disturbance at =c is too weak to be
detected experimentally. Therefore, the growth period for the dis-
turbances to grow is necessary. This difference between the pres-
ent c based on the linear stability theory and the experimentally
determined critical time can be explained by solving the nonlin-
ear Eqs. (1)-(4) directly.

CONCLUSIONS

The onset condition of viscous fingering was analyzed using the
linear and non-linear theories. For the linear stability analysis, the
stability equations were derived in the similar domain. They were
solved analytically and numerically by using non-modal analysis
(NMA) and modal analysis (MA). Through the NMA, it is shown
that the most feasible optimal initial condition is very similar to
the zeroth spectral mode, and initially the present system is uncon-
ditionally stable to this optimal initial disturbance. The present
NMA and MA yield nearly the same growth rate and explain the
previous transient linear and nonlinear ones. Furthermore, the
present linear analysis does not violate the physical relevance con-
dition, whereas the previous work based on the conventional quasi-
steady state approximation (QSSA) yielded unphysical disturbance,
which gives negative concentration. Therefore, the discrepancy
between the conventional QSSA and initial value (IV) calculation
was resolved in the present analysis. Using the optimal initial dis-
turbance identified in the present NMA, we conducted non-lin-
ear direct numerical simulations (DNS). The present DNS study
explains the extant experimental results quantitatively. From above
findings, it is believed that the present analysis will give a new
framework to connect the theoretical predictions with the experi-
mental work.
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