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Abstract−A new key variable selection and prediction model of IAQ that can select key variables governing indoor

air quality (IAQ), such as PM10, CO2, CO, VOCs and formaldehyde, are suggested in this paper. The essential problem

of the prediction model is the question of which of the original variables are the most important for predicting IAQ.

The next issue is determining the number of key variables that should be ranked. A new index of discriminant importance

in the projection (DIP) of Fisher’s linear discriminant (FLD) is suggested for selecting key variables of the prediction

models with multiple linear regression (MLR) and partial least squares (PLS), as well as for ranking the importance

of input measurement variables on IAQ prediction. The prediction models were applied to a real IAQ dataset from

telemonitoring data (TMS) in a metro system. The prediction results of the model using all variables were compared

with the results of the model using only key variables of DIP. It shows that the use of our new variable selection method

cannot only reduce computational effort, but will also enhance the prediction performances of the models.

Key words: Indoor Air Quality (IAQ), Pollution Prediction, Fisher’s Linear Discriminant (FLD), Platform Screen Door

(PSD) System, Variable Selection

INTRODUCTION

Subway systems are a major mode of public transportation in

many cities around the world. Accordingly, many people living in

metropolitan areas spend a considerable amount of time underground

in subway environments that subject them to indoor air pollution

and directly affect their health [3,5,8,17-19]. To address these con-

cerns, the Korean Ministry of Environment (MOE) drafted an Indoor

Air Quality Control in Public Use Facilities Act to control major

pollutants, including PM10, CO2, CO, VOCs and formaldehyde [9].

Advanced monitoring and control strategies for indoor air quality

are required to comply with the national law as well as local regula-

tions. Methods to predict indoor air quality (IAQ) are a good way

to monitor and control indoor air pollutants since they allow opera-

tors to prepare appropriate strategies and ensure safe indoor envi-

ronments. However, indoor air quality is influenced by a large num-

ber of variables, such as the number of passengers, operating condi-

tions, and the concentrations of outdoor air pollutants. Performances

of prediction models strongly depend on the variables that are evalu-

ated due to the complicating effects of dimensionality and com-

plexity, as well as collinearity of IAQ. The selection of appropriate

IAQ variables is critical to accurately model IAQ; otherwise, pre-

dicted IAQ values in subway stations may be different from actual

IAQ values. Because there is a big change in IAQ before and after

platform screen door (PSD) installation, it is important to carefully

select IAQ variables to evaluate IAQ before, during, and after PSD

installation.

Previous studies have examined variable selection techniques based

on stepwise regression and partial least squares/principal component

analysis (PLS/PCA) [10,12,15,20]. Stepwise regression seems to

be suitable for selecting variables from a small descriptor pool [12].

PLS and PCA have been used to reduce large descriptor pools to a

manageable handful of latent variables related to the actual descrip-

tors via a loading matrix [15]. King and Jackson (1999) studied vari-

able selection in large climate data sets using PCA and suggested

four variable selection methods. Ramadan et al. (2001) carried out

discriminant partial least squares (DPLS) and genetic algorithms to

select variables in environmental soil samples and predicted out-

comes using DPLS and artificial neural networks (ANNs). Liu et

al. (2003) reported that the best subsets are determined when the

cross validation correlation coefficient (q2) that is predicted during

the cross-validation prediction process is used rather than the cor-

relation coefficient (r2) that is predicted during the modeling esti-

mation process. Kim et al. (2010) suggested that stepwise variable

selection should be based on sensitivity analyses, similarity mea-

sures, hierarchical clustering, and response surface methods.

In this study, we propose a new variable selection method for

models that predict IAQ in a subway station. Our method selects

key variables among all original IAQ variables and then predicts
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IAQ based on operating conditions in subway stations. It can reduce

the size of the combinatorial problem that results from situations

that incorporate a large number of variables. Our new method can

simultaneously find a solution to the key variable selection and com-

pute a parsimonious IAQ prediction model while providing the bene-

fits of a reduced computational load.

METHODS

1. Partial Least Squares (PLS)

PLS is a multivariate linear regression algorithm that can handle

correlated inputs and limited data [7]. Dimensions of the indepen-

dent variables (inputs, X) and response variables (outputs, Y) are

reduced by projecting them in directions that maximize the covari-

ance matrix between the input and output variables [22]. The original

matrices X and Y are decomposed as in Eqs. (1) and (2):

(1)

(2)

where p and q are loading vectors that contain information about

the relationship between variables, m is the number of latent vari-

ables, T and U are the score matrices and E and F are residuals.

As PLS simultaneously projects X and Y variables onto the same

subspace, T expresses the relationship between the position of one

observation on the X-plane and its corresponding position on the

Y-plane. Once the PLS model has been derived, it is important to

grasp its meaning. For this, the scores t and u are considered. They

contain information about the observations and their similarities or

dissimilarities in X and Y space with respect to the given problem

and model. The X and Y weights describe the way in which the

variables combine to form t and u, which in turn express the quanti-

tative relationship between X and Y. Once the PLS model is estab-

lished, it can be used for prediction, as PLS seeks a maximum co-

variance model of the relationship between the X- and Y-spaces

[13,16,21].

2. Fisher’s Linear Discriminant

There are many feature selection methods, such as PCA and PLS.

PCA identifies components that are useful for representing data,

but there is no reason to assume that these components should be

useful for discriminating between data in different classes, that is,

with different IAQ statuses. FLD analysis is a linear dimensionality

reduction technique that maximizes the separation among classes.

Where PCA seeks vectors that are efficient for representation, FLD

seeks vectors that are efficient for discrimination. Hence, FLD deter-

mines a set of projection vectors that simultaneously maximizes

the scatter between classes and minimizes the scatter within each

class and that maximizes the separability of the data (Fig. 1) [1,2].

Suppose that we have a set of n-dimensional samples, x
1, x2, …,

xn, where n1 and n2 are the number of samples in class 1 and class

2, respectively. The scatter matrix, Si, for each class i and the within-

class scatter matrix, SW, are defined as follows:

(3)

and

(4)

where  is the mean vector for class i, c is the number of classes

and the superscript T denotes the operation of matrix transposition.

The between-class scatter matrix, SB, is defined as follows:

(5)

where  is the total mean vector. The sum of the between-class scat-

ter matrix and the within-class scatter matrix is equal to the total-

scatter matrix, S0, which is defined as follows:

ST=SB+SW (6)

Under the assumption that SW is invertible, the projection vector

(loading) can be obtained by solving the following optimization prob-

lem:

(7)

The FLD vector that maximizes Eq. (7) is equal to the eigenvector

wk of the generalized eigenvector problem

SBwi=λiSWwi (8)

where a generalized eigenvalue of λi indicates the degree of overall

separability among the classes by projecting the data onto wk. Be-

cause the direction and not the magnitude of wk is important, the

Euclidean norm is usually set at ||wi||=1 [2,4]. The first FLD vector

is the eigenvector associated with the largest eigenvalue, which cor-

responds to the largest degree of separation among the classes along

the direction w1. With the FLD vectors determined, each sample

can then be classified in this reduced FLD space using discriminant

analysis [1]. However, it should be noted that FLD implicitly assumes

that the population covariance matrices are equal because a pooled

estimate of the common covariance matrix is used. If the sample

data do not adhere to this assumption, the results of classification

will not be satisfactory.

3. Key Variable Selection and Prediction of IAQ

As mentioned above, numerous variables affect IAQ. Collinear-
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Fig. 1. The concept of optimal projection vector identification by
FLD.
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ity of variables makes it difficult to establish a reliable single model

that considers all contributing variables. When the number of vari-

ables is large and the fraction of relevant variables is small, predic-

tion models are likely to perform poorly with the large number of

variables. The essential problem is the question of which of the ori-

ginal variables are the most important for predicting IAQ. The next

issue is determining the number of key variables that should be ranked.

A variable important measure, which measures the prediction strength

of each variable, should be designed in the variable selection step.

In this paper, discriminant importance in the projection (DIP) of

the FLD model which discriminates normal IAQ data from abnor-

mal data, is used as variable important measure. Once the FLD weight

vectors are computed, the key variables of the prediction model are

selected using Fisher’s DIP value which is defined as follows:

(9)

where DIPk is the discriminant importance of the variable (k) in the

projection and wk, i are the FLD weights of the key variable that has

been used for the IAQ monitoring system. DIP is calculated using

Eq. (9) of the weight vector of the FLD model. Thus, important input

variables for the prediction model can be selected based on DIP

value.

Next, the number of the key variables needs to be decided, since

the prediction capability with the selected variables is dependent

on how much information one is willing to sacrifice. The eigen-

value-greater-than-one rule of the PCA model is the default option

in most statistical packages, and for standardized data the amount

of variance extracted by each component should, at a minimum,

be equal to the variance of at least one variable. In this paper, the

DIP value-greater-than-one rule is used to select the key variable

decision. Variables that have DIP values greater than 1 retain only

those components that are statistically significant. Thus, the thresh-

old value of wk, i used in this study is 1 (Fig. 5).

Fig. 2 shows the proposed scheme for key variable selection and

a prediction model of IAQ. First, IAQ data are measured in subway

stations. Any abnormal data that differ from the normal data set,

called outliers, are detected and excluded. Multiple linear regression

(MLR) and PLS are used to develop the model including all vari-

ables. Two multivariate regression models are developed after the

essential variables are selected. Overall procedures of the prediction

model of IAQ are as follows:

(1) Gather and pre-process the measured data set.

(2) Develop a conventional prediction model using MLR and

PLS and all original variables.

(3) Apply the FLD method to the original data and obtain the

FLD values.

(4) Calculate the DIP based on the FLD and then select key vari-

ables.

(5) Develop MLR and PLS prediction models using the key vari-

ables.

(6) Compare the predicted results with results using all original

variables and with results using only key variables.

Finally, the recycle loop is used to determine if some of the selected

key variables are not appropriate, where a modeling performance of

the prediction model with the selected input variables is evaluated

and compared. If the prediction evaluation result with the selected

variables is not good, the variable selection step should be per-

formed again. The prediction models of MLR and PLS with other

DIPk = wk i,( )
2

i

∑

Fig. 2. Proposed scheme for key variable selection and a predic-
tion model of IAQ.

Table 1. Measured indoor air pollutants in the original data

Variable Mean±SD Min Max

Outdoor PM10 concentration (µg/m3) 62.1±35.9 26.2 98.0

Temperature (oC) 8.4±5.7 2.7 14.1

Humidity (%) 56.2±12.4 43.8 68.6

Wind speed (m/sec) 2.1±0.8 1.3 2.9

The concentrations of PM10 on the platform (µg/m3) 115.8±25.40 90.4 141.2

The concentrations of PM2.5 on the platform (µg/m3) 66.2±22.9 43.3 89.1

Number of passengers (persons) 68838.2±10485.3 58352.9 79323.5
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input variables are developed. If the evaluation result is appropri-

ate, the key variables of IAQ is measured and monitored (Fig. 2).

4. Data Collection

The proposed method was applied to indoor air data measured

off-line at the Y-subway station on line number 3, Seoul Metro, from

October 2007 to April 2008. Samples were collected daily and used

to create a database with a total of 71 samples. As shown in Table 1,

the seven variables for which data were collected were the concen-

trations of outdoor PM10, temperature, humidity, wind speed, concen-

trations of PM10 and PM2.5 on the platform, and number of passengers.

Compared to other environmental data sets, Table 1 shows high vari-

ability with high standard deviation (SD) and min/max values.

Concentrations of particle matter on the platform were measured

once per minute for 20 hours for one day using a mini-volume air

sampler (Airmetrics, USA) (Fig. 3(a)). Next, concentrations of out-

door PM10 and weather conditions were collected through the telem-

onitoring system (TMS) of the Seoul Metropolitan Research Institute

of Public Health and Environment (Fig. 3(b)) and from internet mate-

rial from the meteorological office [8]. The number of passengers

was determined using Seoul Metro’s information system.

The dataset was classified into two groups depending on whether

a platform screen door (PSD) had been installed to evaluate IAQ

before, during, and after PSD installation. With a PSD, subway sta-

tions screen the platform from the train. PSDs are full height, total

barriers between the station floor and ceiling, while platform edge

doors are full height but do not reach the ceiling and thus do not

create a total barrier. PSDs can prevent accidental falls off the plat-

form onto the lower track area, improve security and improve indoor

air quality control within the station since ventilation and air condi-

tioning are more effective when the station is physically isolated

from the tunnel. IAQ concentration showed near normal behavior

throughout the entire study period. The first 29 observations describe

the period before installation of the PSD system, while the remain-

ing 42 observations describe the period after the PSD was installed.

To determine modeling efficiency, the residual mean square of

the error (RMSE) was calculated based on the differences between

each real value and its predicted value:

(10)

where Yi is the real value,  is the predicted value, and n is the num-

ber of observations [6]. When the RMSE value decreases, the model

can be used to accurately predict indoor air quality.

RESULTS AND DISCUSSION

We sought to identify and use key variables for the prediction of

IAQ. As mentioned above, several variables affect indoor air qual-

ity, but their degrees of influence differ. In addition, it is difficult to

implement prediction models that incorporate all of the original vari-

ables due to the complexity and dimensionality incurred by using

large numbers of variables. Therefore, we performed key variable

selection among the original variables using statistical analyses. In

the next step, IAQ using only key variables and two regression mod-

els, MLR and PLS are predicted. The prediction results using only

key variables were compared with those using all of the original

variables.

1. Univariate Monitoring of Air Quality

Trends or changes in variables may be monitored or analyzed

using a univariate quality index. Fig. 4 shows the univariate quality

indexes for seven air pollutants in a subway station. The x-axis rep-

resents the number of observations and the y-axis represents the

concentrations of indoor air pollutants. Concentrations of outdoor

PM10 continued to increase even after the 30th observation, indicat-

ing that seasonal local sources such as yellow-storm events have a

strong influence on particulate matter during this time (Fig. 4).

Concentrations of particulate matter at the platform showed a

similar trend up to the 30th observation, after which they began to

decrease. Since the PSD system was installed just before the 30th

observation, these data suggest that the PSD system affected the

RMSE = 

Σ i=1

n

Yi − Ŷi( )
2

n −1
-------------------------------

Ŷi

Fig. 3. (a) Mini volume air sampler (Airmetrics, USA) and (b) TMS
system in a subway station.
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indoor air quality at the platform by impeding outdoor air pollut-

ants from entering the platform (particulate block effect). Thus, while

concentrations of outdoor PM continued to increase, concentrations

at the platform decreased. This trend was observed for all of the air

pollutants shown in the univariate charts. However, this analysis

does not consider correlations among air pollutants. The multivariate

method is a good tool to simultaneously monitor IAQ for all pollut-

ants by considering correlations between variables. As mentioned

above, the same method can be used for prediction as for monitor-

ing. However, it is necessary to consider only key variables instead

of all the original variables.

2. Key Variable Selection

In this step, key variables were selected. Since indoor air pollut-

ants easily accumulate in indoor spaces and then continue to affect

IAQ after their accumulations, past the past concentrations of indoor

air pollutants must be considered. Therefore, two variables, past

concentrations of PM10 and current PM2.5 at the platform, were added

to the original variables. Then, the past concentrations of PM10 and

PM2.5 at the platform, outdoor PM10, temperature, humidity, wind

speed, and number of passengers in the subway were selected as

input (X) selected variables and the concentrations of PM10 and PM2.5

at the platform were regarded as output (Y) variables, as listed in

Table 2.

FLD was used to discriminate the original data and obtain FLD

weights. The DIP values of X variables were calculated according

to Eq. (9). Fig. 5 shows the DIP plot which reflects the importance

of each input variable. The important variables based on DIP values

are easily identified for the prediction and separation of particulate

concentrations measured on the platform. It indicates that the past

concentrations of PM10 on the platform are the most influential vari-

ables. Other major variables, in order of influence, include number

of passengers, concentration of outdoor PM10, past concentration

of PM2.5 on the platform, wind speed, temperature, and humidity.

In summary, variables that are related to concentrations of the pollut-

ants, the number of passengers, and outdoor PM10 are more impor-

tant than other meteorological variables for predicting IAQ. It has

been known that the number of passengers and concentrations of

outdoor air pollutants are known as the main sources that influence

indoor air quality [14].

To select the key variables, we used the eigenvalue-greater-than-

one rule in this study. The variables with DIP values greater than 1

need to be retained, since the selected variables were statistically

significant and defined as the key variables. The past concentrations

of PM10, number of passengers, and outdoor PM10 were selected as

the key variables in this study.

3. A Prediction Model According to the Multivariate Method

for Indoor Air Pollutants

When the current IAQ status is determined by the monitoring

system, it is possible to manage and control operating conditions to

create a safe subway platform environment. However, as mentioned

above, prediction of IAQ is also important. When IAQ can be ac-

curately predicted, the operator or engineer is able to manage IAQ

by controlling the operating conditions. Therefore, the prediction

of IAQ using the selected key variables was the focus of this part

of the study.

Outdoor PM10, temperature, humidity, wind speed, the past con-

Fig. 4. Univariate quality index of seven indoor variables.

Table 2. Descriptions of X and Y variables of IAQ

Description

X variables The past concentration of PM10 and PM2.5 at the plat-

form, outdoor PM10 concentration, temperature, humid-

ity, wind speed, the number of passengers in a subway

Y variables PM10 and PM2.5 concentrations at the platform

Fig. 5. DIP plot for key variable selection.
* Note) PM10(-1) is the concentration of past PM10 at platform,
Pass is the number of passengers, O-PM10 is the concentration
of outdoor PM10, PM2.5(-1) is the concentration of past PM2.5 at
platform, Ws is the wind-speed, Tem is the temperature, and
Hum is the humidity.
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centrations of particulate matter at the platform, and the number of

passengers were considered as the X variables and concentrations

of PM10 and PM2.5 at the platform were considered as the Y vari-

ables, as shown in Table 2. Forty-four observations were used to

establish the model using training data, and the remaining 26 obser-

vations were used as test data to examine model efficiency. Both

the conventional prediction model including all the original vari-

ables and the proposed prediction model including only key vari-

ables were used to compare two cases.

3-1. Case 1

For Case 1, the conventional prediction model was performed

by MLR and PLS using the original variables. In the MLR model

with the quadratic model which considers the square effect as well

as interaction effects among the variables, is established. Eqs. (11)

and (12) are the quadratic models for PM10 and PM2.5, respectively.

PM10=−0.1x2

1−0.05x2

2+0.1x2

3−0.5x2

4−0.5x2

5−0.5x2

6−1.4x2

7−0.1(x1×x2)

PM10=+0.4(x1×x3)−0.6(x1×x4)+0.2(x1×x5)−0.8(x1×x6)+1.3(x1×x7)

PM10=−0.3(x2×x3)−0.1(x2×x4)−0.7(x2×x5)+0.6(x2×x6)−0.5(x2×x7)

PM10=+0.6(x3×x4)+0.4(x3×x5)+0.3(x3×x6)−1.1(x3×x7)−0.8(x4×x5)

PM10=−0.6(x4×x6)+0.9(x4×x7)−0.6(x5×x6)+1.6(x5×x7)+2(x6×x7)

PM10=+0.2x1+0.7x2−0.2x3+0.3x4−0.9x5+1.1x6−1.2x7+0.5 (11)

PM2.5=−0.1x2

1+0.1x2

2+0.3x2

3−0.5x2

4−0.4x2

5−0.2x2

6−1.7x2

7+0.1(x1×x2)

PM2.5=−0.03(x1×x3)−0.5(x1×x4)+(x1×x5)−1.6(x1×x6)+2.4(x1×x7)

PM2.5=−0.6(x2×x3)−0.3(x2×x4)−0.1(x2×x5)+1.4(x2×x6)−1.4(x2×x7)

PM2.5=+0.4(x3×x4)−0.3(x3×x5)+0.2(x3×x6)−0.3(x3×x7)−0.2(x4×x5)

PM2.5=+0.1(x4×x6)+0.6(x4×x7)−1.4(x5×x6)+1.7(x5×x7)+1.6(x6×x7)

PM2.5=+0.4x1+0.1x2+0.4x3+0.3x4−1.1x5+1.5−1.2x7+0.5 (12)

where x1, x2, x3, x4, x5, x6, and x7 are concentration of outdoor PM10,

temperature, humidity, wind speed, number of passengers, past con-

centration of PM10, and concentration of PM2.5 at the platform, re-

spectively. Fig. 6 shows the prediction results using a conventional

MLR model with all the original variables. In a time series plot,

including the real values and the predicted values. It yielded good

results for the training data but poor predictive ability for the test

data because the coefficient of each variable was determined for

the training data. Thus, this model does not provide a suitable equa-

tion.

Another model using the PLS model using three PCs was built.

It can explain 67.9% of the X data and 64.8% of the Y data. Fig. 7

shows the results of prediction using a conventional PLS model

with all the original variables. RMSE values are presented in Table 3.

In the test data, the RMSE values of the MLR model on PM10 and

PM2.5 at the platform were 86.11 and 71.16, respectively. The total

RMSE value of the training data was 15.22, and the total RMSE

Fig. 6. Prediction results of P-PM10 and P-PM2.5 using a conventional MLR model with all variables: (a) P-PM10 of training data; (b) P-PM10

of test data; (c) P-PM2.5 of training data and (d) P-PM2.5 of test data.
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value of the test data was 157.27. In contrast, RMSE values of the

PLS model on PM10 and PM2.5 at the platform were 29.80 and 19.77,

respectively. The total RMSE value was 38.97 and the total RMSE

value of the test data was 49.57 for the PLS model. These results

show that the PLS model is superior to the conventional MLR model

for predicting IAQ status.

3-2. Case 2

In a previous step, three key variables with the past concentra-

tion of PM10 at the platform, the number of passengers, and outdoor

PM10, were selected based on their DIP values. For Case 2, two pre-

diction models are performed by MLR and PLS using only selected

key variables. The MLR model with the quadratic terms for PM10

and PM2.5 were built in Eqs. (13) and (14), respectively.

PM10=0.31x2

1+0.08x2

2+0.002x2

3−0.3(x1×x2)−0.23(x1×x3)

PM10=+0.18(x2×x3)+0.25x1+0.15x2+0.28x3−0.3 (13)

PM2.5=0.24x2

1+0.06x2

2−0.05x2

3−0.02(x1×x2)−0.1(x1×x3)

PM2.5=−0.02(x2×x3)+0.38x1+0.2x2+0.21x3−0.20 (14)

where x1, x2, x3 are the concentration of outdoor PM10, the number

of passengers, and the past concentration of PM10 at the platform,

respectively. Eqs. (13) and (14) yield a much more parsimonious

model than Eqs. (11) and (12), with all the original variables. Fig.

8(a) and (b) show the prediction results of the MLR using only key

Fig. 7. Prediction results of P-PM10 and P-PM2.5 using a conventional PLS model with all variables: (a) P-PM10 of training data; (b) P-PM10

of test data; (c) P-PM2.5 of training data and (d) P-PM2.5 of test data.

Table 3. RMSE values of MLR and PLS models in prediction re-
sults: (a) with all variables and (b) with key variables

(a) With original variables

MLR PLS

P-PM10 P-PM2.5 P-PM10 P-PM2.5

Training data 09.81 05.41 24.52 14.49

Test data 86.11 71.16 29.80 19.77

(b) With key variables

MLR PLS

P-PM10 P-PM2.5 P-PM10 P-PM2.5

Training data 22.34 13.89 28.26 17.23

Test data 47.77 21.84 32.06 21.53

Note: P-PM10 is the concentration of PM10 at platform; P-PM2.5 is the

concentration of PM2.5 at platform
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variables and (c) and (d) are the regression scatter plots. It confirms

that the parsimony model can improved the prediction perform-

ances.

Fig. 9 shows the results of the prediction results of the PLS model

with only key variables. The PLS prediction model can explain 100%

of the X data and 52% of the Y data using three PCs. In the test

data, the RMSE values of the MLR model on PM10 and PM2.5 at

the platform were 47.78 and 21.84, respectively. The total RMSE

value of for the MLR model for the training data was 36.23, and

the total RMSE value for the test data was 69.62. In contrast, the

RMSE values of the PLS model for PM10 and PM2.5 at the plat-

form were 32.06 and 21.53, respectively. The total RMSE value

was 45.49 and the total RMSE value of the test data was 53.59. It

confirms that the PLS model showed better results for predicting

IAQ than the MLR model in Case 2 as well as in Case 1.

As shown in Table3, RMSE values of MLR as well as PLS on the

test data set (two case studies) were greatly decreased when select-

ing the key variables. Compared to the modeling performances with

all the original variables, RMSE values of PM10 and PM2.5 with the

MLR model of the selected variables decreased from 86.11 to 44.77

and from 71.16 to 21.84, respectively. On the other hand, the RMSE

values of PM10 and PM2.5 with the PLS model of the selected vari-

ables increased from 29.80 to 32.06 and from 19.77 to 21.563, re-

spectively. This indicates that the PLS model has the ability to select

the key components of the model by reducing the dimensions of the

variables, which results in parsimony of the PLS model structure.

CONCLUSIONS

A new key variable selection method is proposed for the predic-

tion of IAQ in subway stations. The selected key variables can effi-

ciently identify the main pollution sources that affect IAQ in an under-

ground space. The result demonstrates that the RMSEs of the pre-

diction models with only key variables are almost the same as those

of the models using all variables, while the PLS prediction model

is better for predicting IAQ than the MLR model. The PLS model

can identify key variables with a concomitant reduced computa-

tional load because it reduces the size of the combinatorial problem

resulting from a large number of variables. This study confirms that

key variable selection is important for the construction of predic-

tion models of IAQ that includes a lot of input and output variables

in a system.

Fig. 8. Prediction results of test data using an MLR model with key variables: (a) time series plot of PM10; (b) time series plot of PM2.5;
(c) scatter plot of PM10 and (d) scatter plot of PM2.5.
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NOMENCLATURE

E, F : residuals [-]

DIPk : discriminant importance in the projection (DIP) [-]

m : number of latent variables [-]

p, q : loading vectors that contain information [-]

Si : scatter matrix [-]

SW : within-class scatter matrix [-]

SB : between-class scatter matrix [-]

ST : total-scatter matrix [-]

T, U : score matrices [-]

wk : eigenvector [-]

wak : FLD weights [-]
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