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Abstract−The problem of determining the shell-side Taylor dispersion coefficient for a shell-and-tube configura-
tion is examined in detail for square and hexagonal arrays of tubes for the case when the shell side flow is laminar and
parallel to the tubes. A multipole expansion method is employed to determine fluid velocity and concentration field
for the fluid on the shell side. The numerical results for the shell side Taylor dispersion coefficient are compared with
those by a cell theory. The cell theory agrees well with the numerical results at small area fractions and gives better
estimates for hexagonal arrays. Finally, we present formulas for determining Taylor dispersion coefficient for the per-
iodic arrays.
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INTRODUCTION

One of the mass transport phenomena encountered in many chem-
ical processes is dispersion of a chemical solute due to a combina-
tion of molecular diffusion and variation in the velocity of the fluid
flowing in the processes. The axial dispersion for longitudinal lami-
nar flow in a tube, referred to in the literature as Taylor dispersion,
has long been an important research topic for its widespread use
since it was first analyzed by Taylor [1953]. This axial dispersion
problem with no chemical reaction at the tube wall was also exam-
ined by Aris [1956]. Many studies have been performed to extend
the work of Taylor and Aris to various systems with chemical reac-
tions [Dill and Brenner, 1982; Shapiro and Brenner, 1986; Balako-
taiah and Chang, 1995; Balakotaiah, 2004].

This paper is concerned with axial dispersion on the shell-side
laminar flow parallel to tubes in periodic arrangements. Heat (or
mass) transfer problems for shell-side longitudinal laminar flow
was first examined by Sparrow et al. [1961] who dealt with the prob-
lem of determining heat transfer coefficients for laminar longitudi-
nal flow on the shell-side when the tubes are placed in a periodic
arrangement. Koo and Sangani [2003] investigated the case of ran-
dom arrays of tubes using a multipole expansion method to calcu-
late velocity and solute concentration of the shell-side fluid and thus
determine Sherwood numbers for the shell-side flow. A similar ap-
proach is employed in the present study to obtain Taylor dispersion
coefficients for longitudinal laminar flow on the shell side, which
may be important in transport processes using a shell-and-tube con-
figuration such as hollow fiber contactors and heat exchangers. We
calculated velocity and concentration fields using an exact numeri-
cal scheme to determine the Taylor dispersion coefficient and made
a comparison with cell theory approximations.

FORMULATION OF THE PROBLEM
AND THE METHOD

In the shell-and-tube configuration shown in Fig. 1, we consider
the problem of determining the shell-side axial dispersion coefficient
resulting from the combination of molecular diffusion of a solute
in the plane normal to the tubes and the variations in the axial velocity
of the fluid. The solute concentration c satisfies the usual convec-
tion-diffusion equation,

Fig. 1. (a) Shell-and-tube configuration with an impulse of solute.
(b) Schematic diagram for periodic arrays of tubes.
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(1)

where DM is the molecular diffusivity of the solute in the shell side
fluid. We take the x3-axis to be along the axes of the tubes and (x1,
x2) to be the coordinates of a point in the plane normal to the tubes.
The distances are non-dimensionalized by a, the radius of the tubes.
And the axial velocity of fluid on the shell side is denoted by u. The
average concentration of the solute <c>s defined by

(2)

satisfying a similar equation

(3)

with DT being the Taylor dispersion coefficient. Here, τ is the area
of the unit cell non-dimensionalized by a2, φ is the area fraction of
the tubes, and As is the area occupied by the shell side fluid. The
spatial average over the shell side area is denoted by a subscript s
outside the angular brackets. The average velocity of the fluid on
the shell side is <u>s=U/(1−φ), U being the superficial velocity.
Since the above equations are linear we may choose a relatively
simple form of <c>s to evaluate the Taylor dispersion coefficient.
We follow Koch and Brady [1985] and take

<c>s=(x3−<u>st)/U (4)

which clearly satisfies Eq. (3). Now substituting

c=<c>s+a2f(x1, x2)/DM (5)

into Eq. (1) we obtain

(6)

Note that the Laplacian operator is taken in the x1-x2 plane.
We shall restrict our analysis to the case of non-adsorbing, non-

reacting tube walls. The boundary conditions for the concentration
are therefore spatial periodicity and the vanishing normal compo-
nent of ∇ f at the surface of the tubes: The positions of the center of
N tubes will be denoted by xα, α=1, 2, ..., N. These centers lie within
a unit cell of a periodic array. Note that N=1 for the case of periodic
arrays.

n·∇ f=0 at |x−xα|=1. (7)

Averaging Eq. (1) over the shell side after substituting for c from
Eq. (5) and recasting the resulting expression in the form given by
Eq. (3) we obtain the following expression for the Taylor disper-
sion coefficient

(8)

where Pe=aU/DM is the Peclet number. And <f>s and <uf>s are de-
fined by

(9)

(10)

We shall use the method of multipole expansion for determining
the velocity and concentration fields. The method uses periodic fun-
damental singular solutions of Laplace and biharmonic equations
and their derivatives to construct velocity and concentration fields.
We shall describe here in more detail the procedure for determin-
ing the velocity field that follows the analysis presented in Sangani
and Yao [1988]. The shell side fluid velocity satisfies

∇ 2
u=G, (11)

where G is the pressure gradient non-dimensionalized by µU/a2. A
multipole expansion expression for the velocity field is given by
[Sangani and Yao, 1988]

(12)

where An
α and  are the 2

n
-multipoles induced by the presence of

tube α, ≡0, and ∂k

n
=(∂

n
/∂xk

n) (k=1, 2) is a short-hand notation for
the n-th order partial derivative with respect to xk. The function S1

is a spatially periodic function satisfying [Hasimoto, 1959]

(13)

In the above expression, xL are the coordinates of the lattice points
of the array and δ is the Dirac delta function. In addition to the above
differential equation we require that the integral of S1 over the unit
cell be zero. A Fourier series representation of S1 and an efficient
technique based on Ewald summation for evaluating S1 are described
by Hasimoto [1959]. Substituting Eq. (12) into Eq. (11), and mak-
ing use of Eq. (13), we find that the non-dimensional pressure gra-
dient is related to the sum of monopoles:

(14)

where <A0> is the average monopole. The multipoles An
α and 

and the constant U0 in Eq. (12) are to be determined from the no-
slip boundary condition u=0 on the surface of the tubes and Eq.
(11), which states that the non-dimensional superficial velocity is
unity. For this purpose it is convenient to re-expand u around the
center of each tube. For example, u is expanded near tube α as

(15)

with

un
α(r)=an

αr−n+en
αrn for n≥1, u0

α(r)=a0
αlogr+e0

α+Gr2/4, (16)

where r=|x−xα|. The terms singular at r=0 in the above expression
arise from the singular part of S1 at r=0. Noting that S1 behaves as
−2logr as r�0 [Hasimoto, 1959], and using the formulas for the
derivatives of logr given in Appendix, we obtain

a0
α=−2A0

α
, an

α=2(−1)
n
(n−1)!An

α
for n≥1. (17)

The coefficients  are similarly related to . The coefficients of
the regular terms, such as en

α, are related to the derivatives of the
regular part of u at x=xα [Sangani and Yao, 1988]. For example,

(18)

∂c
∂t
----- + u

∂c
∂x3
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(19)

where ξn=n/4 for n≥2, =(n−2)/4 for n≥3, and ξ0=ξ1= = =0.
In Eqs. (18)-(19), ur denotes the regular part u obtained by remov-
ing the singular part, −2logr, from S1(x−xα).

To determine the relation between U0 in Eq. (12) and the superfi-
cial velocity we must integrate u over the area As occupied by the
shell side fluid. Since the integrals of S1 and its derivatives over the
unit cell vanish, it is easier to evaluate the integral of u over As by
integrating Eq. (12) over the unit cell and subtracting from it the
integral of u inside the tubes. With the non-dimensional superficial
velocity taken as unity, the above procedure yields

(20)

Care must be taken in carrying out the above integration to account
for the singular nature of uα at x=xα. Upon integrating, we obtain

U0=1+φ(1−φ/2)<A0>+2φ<A2>. (21)

The no-slip boundary condition on the surface of the tube, together
with the orthogonality of trigonometric functions, requires that

(22)

Substituting for an
α and en

α from Eq. (17) and Eq. (18) into expres-
sions for un

α and applying Eq. (22) we obtain a set of linear equa-
tions in the multipole coefficients An

α
. This set is truncated by retain-

ing only the terms with n≤Ns to yield a total of 2Ns+1 equations in
the same number of unknowns, solving which yields the velocity
of the fluid on the shell side.

The concentration of the fluid on the shell side is determined in
a similar manner. A formal solution of Eq. (3) that is spatially periodic
is given by

(23)

where the spatially periodic function S2 satisfies

∇ 2S2=S1 (24)

As shown by Hasimoto [1959]

(25)

where the summation is over all reciprocal lattice vectors except
k=0. As mentioned earlier, Hasimoto [1959] has described a meth-
od for evaluating these functions using the Ewald summation tech-
nique.

Substituting for f and us from Eq. (23) and Eq. (12) into Eq. (6)
and using Eq. (13) and Eq. (24), we find that, in order for Eq. (23)
to be the solution for f, we must have

(26)

To determine the multipoles Bn, we expand f near the center of each
tube. Near tube α

(27)

with

(28)

(29)

(30)

and similar expressions for . Once again, the coefficients of the
singular terms, e.g., bn

α, can be related to the multipoles induced by
tube a (i.e., An

α and Bn
α) and the coefficients of regular terms, gn

α can
be related to the derivatives of the regular part of f at x=xα. The re-
sults are given in the Appendix. The condition of vanishing flux
integrated over the surface of the tube yields

(31)

Thus, we see the monopole induced is not an unknown. On noting
that U0 is given by Eq. (21), we see that the condition Eq. (26) is
automatically satisfied.

The average concentration of the shell side fluid is determined
by integrating f given by Eq. (23) over the entire unit cell and sub-
tracting from it the integrals over the area occupied by the tubes.
The latter are evaluated using the local expansion near each tube
(cf. Eq. (27)). The resulting expression is

(32)

Here, <g0>, <a0>, <b2>, and <a4> are averages of each coefficient
defined in the same manner as <A0> in Eq. (14).

For determining <uf>s, we need to integrate the product uf over
the area occupied by the shell side fluid. This is difficult because it
would require evaluating S1, S2, and their derivatives at many points
outside the tubes. It is more efficient instead to solve for an auxiliary
function ψ defined by

∇ 2ψ=f, ψ=0 at |x−xα|=1. (33)

Substituting for f from Eq. (33) into Eq. (10) and using Green’s the-
orem we obtain

(34)

The integral over ∂As, which consists of the unit cell boundary and
the surface of the tubes, vanishes owing to the boundary condition
u=ψ=0 on the tube surface and the spatial periodicity of ψ and u.
On using Eq. (11) we obtain

(35)

A formal expression for ψ can be written in the same way as for u

ẽn
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α
∂1

n − 1∂2[ ] S1 x − xα( )

Sm x( ) = 
1

πτ − 4π2( )m − 1
----------------------------- k − 2m 2πik x⋅( ),exp

k 0≠
∑

4π
τ

------ B0

α
 = U0 − 

1
1− φ
----------.

α = 1

N

∑

f x( ) = f n

α
r( ) ncos θ + f̃ n

α
r( ) nsin θ,

n = 0

∞

∑

f 0

α
 = − 

1
4
---r2 1− rlog( )a0

α
 + 

r2

4
---e0

α
 + b0

α
rlog  + g0 + 

r4

64
------G − 

1
1− φ
----------r

2

4
---,

f 1

α
 = 

1
2
---r rlog  − 

1
2
--- 

  a1
α

 + 
r3

8
---e1

α
 + b1

α
r− 1 + g1

αr,

f n

α
 = 

r2 − n

4 1− n( )
-----------------an

α
 + 

rn + 1

4 n + 1( )
------------------en

α
 + bn

α
r− n + gn

αrn for n 2≥ ,

f̃ n

α

B0

α
 = 

1
4
---A0

α
 − 

1
32
------G + 

1
4φ
------ − 

1
2
---A2

α
 − 

1
4 1− φ( )
-----------------.

f〈 〉 s = 
3φ

8 1− φ( )
----------------- − 

φ g0〈 〉
1− φ
------------ + 

φ
96
------ 27  − 11φ( )

1− φ
------------------------ a0〈 〉

+ 
φ

1− φ
---------- b2〈 〉  − 

φ
24 1− φ( )
-------------------- a4〈 〉 .

τ uf〈 〉 s = ufdA = u∇ 2ψdA = ψ∇ 2udA
As

∫As
∫As

∫
+ u∇ ψ − ψ∇ u( ) ndl.⋅∂As
∫

uf〈 〉 s = 
G
τ
---- ψdA.

As
∫



Taylor Dispersion Coefficients for Longitudinal Laminar Flow in Shell-and-tube Exchangers 187

Korean J. Chem. Eng.(Vol. 22, No. 2)

and f:

(36)

where S1, S2 and S3, and their derivatives, are to be evaluated at x−
xα, and ∇ 2

S3=S2. Eq. (25) with m=3 can be used to evaluate S3. The
coefficients ψ0, Cn and  are to be evaluated from the boundary con-
dition ψ=0 on the surface of the tubes. Finally, since ∇ 2S1=4π/τ at
all points outside the tubes, we require that

(37)

To determine the coefficients , we expand ψ near the surface of
each tube as

(38)

with

ψn=ψn
r+ψn

s, (39)

(40)

For the purpose of applying boundary condition at r=1, we evalu-
ate ψn

s at r=1 using 

ψn
s=β1An+β2An+2+β3An+4+β4Bn+β5Bn+2+β6Cn, (41)

where

β1=3/64, β2=1/4, β4=1/2, β3=β5=β6=0 for n=0,
β1=5/32, β2=3/8, β4=12 for n=1,

β1=3/32 for n=2. (42)

Now the integral of ψ over the area occupied by the shell side
fluid can be determined by integrating ψ given by Eq. (36) over
the unit cell first and then subtracting from it the integrals inside
the tubes using the Eq. (38) for ψ near each tube. The final result
for the mixing-cup based concentration difference is

(43)

Here, the averages of multipoles and coefficients are also defined
in the same manner as <A0> in Eq. (14). 

RESULTS AND DISCUSSION

The results of exact calculations are compared with the predic-
tions obtained by using a cell theory [Happel, 1959] which is more
appropriate for periodic arrays than effective-medium theory. In
this theory, the periodic unit cell is replaced by a fluid cell of outer
radius R=φ−1/2 and inner radius unity, as shown in Fig. 2. The fluid
velocity is given by

(44)

The constants are determined by using Eq. (14) and the boundary
conditions u=0 at r=1 and ∂u/∂r=0 at r=R, and the condition that
the average velocity of the fluid in the cell equals 1/(1−φ). This yields

(45)

Similarly, from Eq. (6) the concentration for the shell side fluid is
given by

(46)

The constant B0 is determined by using the conditions of no flux at
r=1 and at r=R. The average concentrations of the fluids, and hence
the Taylor dispersion coefficients, can be determined once this con-
stant is determined. The results are given below.

(47)
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Fig. 2. Cell model.
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(48)

The results for the coefficient λ as a function of area fractions of
tubes for square and hexagonal arrays are given in Table 1. We find
that the coefficient l by the exact calculations shows minimum value
around the area fractions of 0.2 and 0.4 for square and hexagonal
array, respectively. This interesting behavior is due to difference in

dependency of <f>s and <uf>s/U on the area fractions. The differ-
ence between the two terms by the exact calculations for hexago-
nal array is plotted as a function of area fraction in Fig. 3. The dif-
ference <f>s−<uf>s/U decreases with f rapidly at low area frac-
tions before reaching the minimum around φ=0.4 and 0.5 beyond
which the difference slightly increases with φ. Both the velocity
and concentration fields are disturbed due to the presence of a tube
and the magnitude of the disturbance increases with φ. Therefore,
it is expected that <uf>s is more affected by the disturbance than
<f>s at high φ where the disturbance becomes quite significant, and
thus the difference between the two terms gets large at high φ.

Table 1 also shows the predictions obtained by using the cell the-
ory. The coefficient λ by the cell theory decreases monotonically
with φ even at high φ, unlike the exact calculation results. It seems
that the accuracy of cell theory approximation is reduced at high φ.
However, it is seen that the cell theory is somewhat more accurate
for hexagonal arrays, as might be expected based on the observa-
tion that a hexagonal cell is closer to the circular cell used in the
theory than a square cell, as shown in Fig. 2 representing that a tube
at origin is surrounded by six adjacent tubes with equal distance
from the tube in hexagonal arrays while eight tubes are placed near
a tube at origin with two different distances from the tube in square
arrays. Thus the predictions of the coefficient λ by the cell theory
are in better agreement with those obtained by exact calculations
for the hexagonal arrays than those for square arrays. We see that
the agreement between the two is good for area fractions of tubes
less than about 0.3.

Lastly, we note that the dispersion in square array is greater than
in hexagonal array. It is easily expected that variance of fluid velocity
resulting from disturbance by neighboring tubes is larger in square
arrays since the neighboring tubes are placed in unequal distance
from a tube at origin than that in hexagonal arrays, and thus the dis-
persion is affected by the velocity variance.

CONCLUSION

We determined Taylor dispersion coefficients for shell-side lon-
gitudinal flow along the axes of tubes in square and hexagonal arrays
for the case of non-absorbing, non-reacting tube walls. The results
for Taylor dispersion coefficients for square and hexagonal arrays
are compared with a cell theory approximation for wide range of
area fractions of tubes. Agreement between the cell theory and num-
erical results is excellent at small area fractions. At larger area frac-
tions, the cell theory gives better estimates for hexagonal arrays.
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APPENDIX

Formulas for determining the coefficients of regular terms
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Fig. 3. <f>s−<uf>s/U versus φ.

Table 1. λ for square and hexagonal arrays

φ
Simulation

Cell theory
Square array Hexagonal array

0.01
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

0.275
0.101
0.067
0.054
0.050
0.050
0.054
0.062
0.075
0.094
0.122
0.160
0.209
0.268
0.326

0.241
0.083
0.049
0.036
0.028
0.024
0.021
0.019
0.017
0.018
0.020
0.024
0.033
0.053
0.209

0.238
0.081
0.048
0.034
0.027
0.022
0.018
0.016
0.014
0.012
0.011
0.010
0.009
0.008
0.007
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(A3)

(A4)

NOMENCLATURE

As : area occupied by the shell side fluid
a : radius of tubes
c : concentration of solute on shell side
DM : molecular diffusivity
DT : Taylor dispersion coefficient
G : pressure gradient non-dimensionalized by µU/a2 in axial di-

rection of tubes
Pe : Peclet number based on shell-side flow
r : radial distance from the center of the tube at origin
U : superficial velocity of the fluid on the shell side
u : fluid velocity on the shell side
xα : position vector of the center of tube a
xL : coordinates (position vector) of the lattice points of the array
δ : Dirac’s delta function
φ : area fraction of the tubes
ρ : density of the shell fluid
τ : unit cell area non-dimensionalized by a2

µ : viscosity of fluid
<c>s, <u>s : spatial average of c and u over shell side
<an>, <bn>, <en>, <gn>, <hn> : averages of coefficients over N tubes

in a unit cell
<An>, <Bn>, <Cn> : averages of multipoles over N tubes in a unit

cell
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