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Abgtract—The problem of determining the shell-side Taylor dispersion coefficient for a shell-and-tube configura-
tion is examined in detail for square and hexagona arrays of tubes for the case when the shell side flow is laminar and
paralel to the tubes. A multipole expansion method is employed to determine fluid velocity and concentration field
for the fluid on the shell side. The numerica resultsfor the shell side Taylor dispersion coefficient are compared with
those by a cell theory. The cell theory agrees well with the numerica results at smal area fractions and gives better
estimates for hexagona arrays. Finaly, we present formulas for determining Taylor dispersion coefficient for the per-

iodic arrays.
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INTRODUCTION

One of the mass trangport phenomena encountered in many chem-
ica processes is dispersion of a chemica solute due to a combina:
tion of molecular diffusion and variion in the velocity of the fluid
flowing in the processes. The axid dispersion for longituding lami-
nar flow in atube, referred to in the literature as Taylor digpersion,
has long been an important research topic for its widespread use
dnce it was firgt andyzed by Taylor [1953]. This axid disperson
problem with no chemicd reaction & the tube wall was dso exam-
ined by Aris[1956]. Many studies have been performed to extend
thework of Taylor and Aristo various sysemswith chemical reac-
tions [Dill and Brenner, 1982; Shapiro and Brenner, 1986; Baako-
taiah and Chang, 1995; Baakotaiah, 2004].

This paper is concerned with axid digperson on the shell-sde
laminar flow pardld to tubes in periodic arrangements Heat (or
mass) trander problems for shell-de longitudind laminar flow
was firg examined by Sparrow &t d. [1961] who dedlt with the prob-
lem of determining hesat transfer coefficients for laminar longitudi-
nd flow on the shell-dde when the tubes are placed in a periodic
arrangement. Koo and Sangani [2003] invedtigated the case of ran-
dom arrays of tubes usng a multipole expanson method to cacu-
late velocity and solute concentration of the shell-side fluid and thus
determine Sherwood numbersfor the shdl-dde flow. A Smilar gpo-
proach is employed in the present study to obtain Taylor digpersion
coefficients for longitudina laminar flow on the shell side, which
may beimportant in trangport processes using a shell-and-tube con-
figuration such as hollow fiber contactors and heat exchangers. We
cdculaed velocity and concentration fields using an exact numeri-
cd schemeto determine the Taylor disperson coefficient and made
acomparison with cdl theory approximations
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FORMULATION OF THE PROBLEM
AND THE METHOD

In the shell-and-tube configuration shown in Fg. 1, we condder
the problem of determining the shell-sde axid digpersion coefficient
resulting from the combination of molecular diffuson of a solute
in the plane normd to the tubes and the varigtionsin the axia velodity
of the fluid. The solute concentration ¢ satisfies the usud convec-
tion-diffuson equetion,
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Fig. 1. (a) Shdl-and-tube configuration with an impulse of solute
(b) Schematic diagram for periodic arrays of tubes.
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where D,, isthe molecular diffusvity of the solute in the shell side
fluid. We take the x;-axis to be dong the axes of the tubes and (x,,
X,) to be the coordinates of apoint in the plane normd to the tubes.
The digtances are nonrdimendgondized by a, the radius of the tubes
And theaxid veodity of fluid on the shell Sdeis denoted by u. The
average concentration of the solute <c>, defined by
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satisfying asmilar equetion
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with D; being the Taylor digperson coefficient. Here, T isthe area
of the unit cdl non-dimensondized by &, @is the area fraction of
the tubes, and A, is the area occupied by the shell sde fluid. The
spatid average over the shell Sde areais denoted by a subscript s
outside the angular brackets. The average velocity of the fluid on
the shel sde is <u>=U/(1-¢), U being the superficid velodity.
Since the above eguaions are linear we may choose a reldively
dmple form of <c>, to evauate the Taylor digperson coefficient.
Wefollow Koch and Brady [1985] and teke

<c>=(x—<usdU (@)
which clearly satisfies Eq. (3). Now subdtituting

c=<C>+af(Xy, X,)/Dyy ®
into Eq. (1) weobtan
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Note that the Laplacian operator istaken in the x,-x, plane.

We dhdl restrict our analysis to the case of non-adsorbing, non-
reacting tube walls. The boundary conditions for the concentration
are therefore spatid periodicity and the vanishing norma compo-
nent of Cf a the surface of the tubes The postions of the center of
N tubeswill bedenated by x°, a=1, 2, ..., N. These centersliewithin
aunit cdl of aperiodic aray. Note thet N=1 for the case of periodic
arays

n-Of=0 a x-x=1 U]

Averaging Eq. (1) over the shdl Sde after subdgtituting for ¢ from
Eq. (5) and recadting the resulting expression in the form given by
Eq. (3) we obtain the following expresson for the Taylor disper-
Son coefficient

D:_ ¢ y=_1[gn-Lfd

5. =1+APe’, A=pt] -7 | ®
where Pe=aU/D,, isthe Peclet number. And <f>, and <uf>, are de-
fined by

o= fdA, ©

1
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We shdl use the method of multipole expansion for determining
the velodity and concentration fidlds. The method uses periodic fun-
damental Sngular solutions of Laplace and biharmonic equations
and their derivatives to condruct velocity and concentration fields.
We shdl describe here in more detall the procedure for determin-
ing the velocity fidd thet follows the andyd's presented in Sangani
and Yao [1988]. The shell sdefluid velocity satisfies

Ou=G, (1

where G is the pressure gradient non-dimengiondized by pU/at. A
multipole expanson expresson for the velocity fidd is given by
[Sangani and Yao, 1988]

N @ ~aan-
U=Uo* 5 3 [A0: +A0) 0] S,(x X), (12)

where A7 and A, arethe 2'-multipolesinduced by the presence of
tube a, A,=0, and 8,=(8"/0x}) (k=1, 2) isashort-hand notation for
the n-th order partia derivative with respect to x,. The function S,
isagpdtidly periodic function satisfying [Hasmato, 1959

8,00 =4 25 ot —xL)}. 13

In the above expression, x, are the coordinates of the latice points
of thearray and disthe Dirac ddtafunction. In addition to the above
differentid equation we reguire thet the integrdl of S, over the unit
cdl be zero. A Fourier series representation of S, and an efficient
technique based on Ewad summation for evauating S, are described
by Hasmoto [1959]. Subdtituting Eq. (12) into Eq. (11), and mak-
ing use of Eq. (13), we find that the non-dimensond pressure gra-
dient isrelaed to the sum of monopoles

G :47" > A; =4gtAL] (14)

where <Ag> is the average monopole. The multipoles AZ and A,
and the congant U, in Eq. (12) are to be determined from the no-
dip boundary condition u=0 on the surface of the tubes and Eq.
(12), which dates that the non-dimensiond superficid velodity is
unity. For this purpose it is convenient to re-expand u around the
center of each tube. For example, uis expanded near tube a as

u=i[u§(r)cosn6+u§‘(r)sinnq (15)
with
wWn=er"+eir" forn=1, us(r)=alogr+e&5+Gri/4, (16)

where r=[x—x°|. The terms singular at r=0 in the above expresson
arise from the sngular part of S, a r=0. Noting that S, behaves as
—2ogr as r—0 [Haamoto, 1959], and using the formulas for the
derivatives of logr givenin Appendix, we obtain

F=—2A,, #=2(-1)'(-1IA, forn=1. (17)
The coefficients A aresmilaly rdaed to & . The coefficients of
the regular terms, such as €, are relaed to the derivatives of the
regular part of ua x=x" [Sangani and Yao, 1988]. For example,

=210} ~£01 *Tu (¢, (19)
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where &=r/4 for n=2, &,=(n—2)/4 for n=3, and &,=&,=€,=¢,=0.
In Egs (18)~(19), U denotes the regular part u obtained by remov-
ing the singular part, —2logr, from SL(x—x").

To determine the rdlation between U, in Eq. (12) and the superfi-
cd veodty we mus integrate u over the area A, occupied by the
shdl sdefluid. Sncetheintegrds of S and its derivatives over the
unit cell vanigh, it is eedier to evauete the integrd of u over A, by
integrating Eq. (12) over the unit cdl and subtracting from it the
integral of u indde the tubes With the non-dimensond superficia
veocity taken as unity, the above procedure yields

= —1‘ N m a
17U TC,ZLO [or u'(r, O)rdrd6. -

Care mugt be taken in carrying out the above integration to account
for the sngular nature of U” at x=x". Upon integrating, we obtain

U= 1+ 1- @2)<AS>+2¢<A>. (21)

The no-dip boundary condition on the surface of the tube, together
with the orthogondlity of trigonometric functions, requiresthat

Un(1) =in(2) =0. 2

Subgtituting for & and € from Eq. (17) and Eq. (18) into expres-
sons for u§ and applying Eq. (22) we obtain a st of linear equar
tions in the multipole coefficients A, This set is truncated by retain-
ing only the terms with n<N, to yidd atotd of 2N,+1 equationsin
the same number of unknowns solving which yields the velocity
of thefluid on the shell sde.

The concentration of the fluid on the shell Sde is determined in
asmilar manner. A formd solution of Eq. (3) thet is didly periodic
isgiven by

09 =3 3 (B0 +B01 0], x)
+[An0; +A701 0] Si(x —x°) @)

where the gatidly periodic function S, satifies

[’S=S (24
As shown by Hasmoto [1959]
—_ 1 —2m -
S0 = T Rk ), (25)

where the summation is over dl reciproca lattice vectors except
k=0. As mentioned earlier, Hasmoto [1959] has described ameth-
od for evaluating these functions using the Ewald summation tech-
nique.

Subdtituting for f and w, from Eq. (23) and Eq. (12) into Eq. (6)
and using Eq. (13) and Eq. (24), we find thet, in order for Eq. (23)
to bethe solution for f, we mugt have

1
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To determine the multipoles B,,, we expand f near the center of each
tube. Near tube a

March, 2005

f(x) = if “(r)cosn@+f 5(r)sinné, @
with

o__Loq_ “+r—2 ¢ +h + +L4- _1r

fo 4r (1-logr)ag 4e0 bologr +g, 646 -t (28)

a_1 _ a+r3a+ﬂfl+a

fl—érgogr [t gel thar g, (29)

« rZ*n n+1

S T

fe € +bor "+gir" for n=2, (30)
and similar expressions for , . Once again, the coefficients of the
sngular terms, eg., by, can be rdated to the multipoles induced by
tubea (i.e, A, and B;) and the coefficients of regular terms, g can
be related to the derivatives of the regular part of f a x=x". There-
allts are given in the Appendix. The condition of vanishing flux
integrated over the surface of the tubeyidds

1

a a_1
=Zp% - +
Bo 47 3ZG

1 1. 1

4p 277 41-gy

(31)

Thus, we see the monopole induced is not an unknown. On nating
that U, is given by Eq. (21), we see that the condition Eq. (26) is
autometicaly stisfied.

The average concentration of the shell sde fluid is determined
by integrating f given by Eq. (23) over the entire unit cdl and sub-
tracting from it the integrals over the area occupied by the tubes.
The latter are evauated using the loca expansion near each tube
(cf. Eq. (27)). Theresulting expressionis

__ 3¢ _¢afl. @(27-11¢
DjE*l'_az(l—(p) 1-¢ +§% 1-¢ (]

9 -9
+1—q)[b2|:| 24(1-¢@) &l ()

Here, <g>, <a>, <b,>, and <a,> are averages of each coefficient
defined in the same manner as<Ay> in Eq. (14).

For determining <uf>,, we need to integrate the product uf over
the area occupied by the shell sdefluid. Thisis difficult because it
would require evduating S,, S,, and their derivatives at many points
outsde thetubes. It is more efficient ingtead to solve for an auxiliary
function  defined by

y=f, ¢=0 a)x-x=1. (33)
Subdtituting for f from Eq. (33) into Eq. (10) and using Green'sthe
orem we obtain

TIUfT =, ufdA = J'Asulilzl,udA =[.. WOudA

+IdAS(qu—wDu)mdl. (34
Theintegrd over dA,, which conggts of the unit cell boundary and
the surface of the tubes, vanishes owing to the boundary condition

u==0 on the tube surface and the spatid periodicity of and u.
Onusng Eq. (11) weobtain

Wi =2y, yoa. @)

A formd expression for ¢ can be written in the same way asfor u
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andf:

a.n-1

W(x) = %’fZlED[C 20, +Cl0; 0]S,

~a n-1 ~a,n-1

+[Bn01 +B10, 91S; +[A0) +And) 0]]S; (36)

whaesS, S, ad S;, and ther derivatives, areto be evauated & x—
x?, and ('S;=S,. Eq. (25) with m=3 can be used to evaludte S,. The
coeffidents i, G, and C, areto be evduated from the boundary con-
dition (=0 on the surface of the tubes. Finally, since [°'S,=47fT &
al points outs de the tubes, we require that

z

C; =0. (€]

1

a

To determine the coeffidients C;, we expand  near the surface of
each tube as

W=3 (n)cosng+y,(r)sinng €3)
with
W=yn+un, (39
- gﬂ ﬂ*2 en n+4
U=t tamry )
+—C r°G — % 1t forn0 (40)
226 * 84(1-9) =0

For the purpose of gpplying boundary condition at r=1, we evau-
aeyrar=lusng

()UnszﬂlAn+B2An+2+ﬁ§An+4+ﬁ4Bn+BjBn+2+BGCn1 (41)
where
_(=1)"(n-3)! _(-1""(n-2)!(n+2)
Bl_ 16 ’ BZ - 8 )
_(=1'nI(n+3)(n +4) ()" (n-2)!
B 16n B4 - 8 )
p=CUTMO%D) g —pgy(n -1y
B=364, B=14, B=12, B=B=B=0 for n=0,
B=5/32, =318, [=12 for n=1,
B=332 forn=2. 42

Now the integra of ( over the area occupied by the shell Sde
fluid can be determined by integrating  given by Eq. (36) over
the unit cell firgt and then subtracting from it the integras indde
the tubes using the Eq. (38) for ( near each tube. The find result
for the mixing-cup based concentretion differenceis

5 5 3 5
=- — +— += +=
wfd G(;{gz EQB\OD [A] BB\AD 4B\GD

5 B 35
+
16DB°D 2 2

b, 1 g 10, G &
8 "3 1-¢) 320120876 go} “3)

B0+ [CO-2[C, 0+ th

Here, the averages of multipoles and coefficients are dso defined
in the same manner as <A,> in Eq. (14).

RESULTSAND DISCUSSION
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Fig. 2. Cell modd.

The results of exact cdculaions are compared with the predic-
tions obtained by usng acell theory [Happd, 1959] which ismore
appropriate for periodic arrays than effective-medium theory. In
this theory, the periodic unit cdll is replaced by afluid cdl of outer
radius R=¢™* and inner radius unity, as shown in Fig. 2. Thefluid
velocity isgiven by

u=-2A,logr +%;r2 +e, 44

The congtants are determined by using Eq. (14) and the boundary
conditions u=0 a r=1 and ou/or=0 & r=R, and the condition that
theaverage vdodity of thefluid inthe cdl equals 1/(1-¢). Thisyidds

3,2_1

-1 jogre - "

A, 9 2" R® 2R

Smilarly, from Eq. (6) the concentration for the shell Sde fluid is
given by

1
f=A[ r’(1-logr) + 2%1_6 ﬁ}

(45)

- — rz

2B,logr 4—(1_@ for r>1. (46)
The congant B, is determined by using the conditions of no flux at
r=1and a r=R. The average concentrations of the fluids, and hence
the Taylor disperson coefficients, can be determined once this con-

dant is determined. The results are given below.
[ﬂg: 0 ERL‘t —m_R _&2 _ED
8 16 48]

R -1

2 4
+r Op? JR-In_ R-1 0
Bo-RlogR >0 16(1—(p)8 @)

mfu-—{m%m + 1R D3

P20 R logR +—%¥“——DD+—I09R(2I09R -1)
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AR R,

(R D 26 4 12]
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+A0R® BR° DD
R'128 96 16 384DD

+A,B [2R2 logR)* -logR 0
0 0D g Z:'

2R o R-1 R ? 1]
R2D4IogR 16 IogR 4 DB

A, 01 AR R, 1
a1-95 R|09R+ (R D Re 41‘2%}(48)

Thereaults for the coefficient A as afunction of area fractions of
tubes for square and hexagond araysare givenin Table 1. We find
that the coefficient | by the exact cdculaions shows minimum vaue
around the area fractions of 0.2 and 0.4 for square and hexagond
array, respectively. Thisinteresting behavior is due to differencein

Table 1. A for square and hexagonal arrays

Simulation
Q Cell theory
Square array Hexagonal array
0.01 0.275 0.241 0.238
0.05 0.101 0.083 0.081
0.1 0.067 0.049 0.048
0.15 0.054 0.036 0.034
0.2 0.050 0.028 0.027
0.25 0.050 0.024 0.022
0.3 0.054 0.021 0.018
0.35 0.062 0.019 0.016
04 0.075 0.017 0.014
0.45 0.094 0.018 0.012
0.5 0.122 0.020 0.011
0.55 0.160 0.024 0.010
0.6 0.209 0.033 0.009
0.65 0.268 0.053 0.008
0.7 0.326 0.209 0.007
1
O Numerical Simulation(HX)
A Cell theory
=
0.1
2
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Fig. 3. <f>~<uf>JU versus @

March, 2005

dependency of <f>; and <uf>J/U on the area fractions The differ-
ence between the two terms by the exact cdculations for hexago-
nd array is plotted as a function of areafraction in Fg. 3. The dif-
ference <f>—<uf>JU decreases with f rapidly & low area frac-
tions before reaching the minimum around ¢=0.4 and 0.5 beyond
which the difference dightly increases with @ Both the veocity
and concentration fields are disturbed due to the presence of atube
and the magnitude of the disurbance increases with @ Therefore,
it is expected that <uf>, is more affected by the disturbance than
<f>, a high pwhere the disturbance becomes quite significant, and
thusthe difference between the two terms getslarge a high @

Table 1 dso shows the predictions obtained by using the cdll the-
ory. The coefficient A by the cdll theory decreases monotonicaly
with geven at high @ unlike the exact cdculdion results. It ssems
that the accuracy of cdll theory gpproximation is reduced at high ¢
However, it is seen that the cdll theory is Somewhat more accurate
for hexagond arrays, as might be expected based on the obsarva
tion thet a hexagond cdl is closer to the circular cdl used in the
theory than asuare cdl, as shown in Fig. 2 representing that atube
a origin is surrounded by six adjacent tubes with equa distance
from the tube in hexagond arrays while eight tubes are placed near
atube a origin with two different distances from the tube in square
arrays. Thus the predictions of the coefficient A by the cdl theory
are in better agreement with those obtained by exact cdculations
for the hexagond arrays than those for square arrays. We see that
the agreement between the two is good for area fractions of tubes
lessthan about 0.3.

Lagtly, we note thet the dispersion in square array is gregter than
in hexagond aray. It iseesily expected thet variance of fluid velocity
resulting from disturbance by neighboring tubes is larger in square
arrays Snce the neighboring tubes are placed in unequd digtance
from atube at origin than that in hexagond arrays, and thusthe dis-
persion is afected by the velocity variance.

CONCLUSON

We determined Taylor digpersion coefficients for shel-dde lon-
gitudind flow dong the axes of tubesin sguare and hexagond arrays
for the case of non-absorbing, non-reacting tube wals. The results
for Taylor digpersgon coefficients for square and hexagond arrays
are compared with a cdl theory gpproximation for wide range of
areafractions of tubes Agreement between the odl theory and num-
ericd resultsis excdlent & smal areafractions At larger areafrac-
tions, the cdll theory gives better etimatesfor hexagond arrays.
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APPENDI X

Formulasfor determining the coefficients of regular terms

- 1 T (x-S _G

On = 1T(X) 2An-1) 645n4 (A1)
..0,__1_ n-1 rooay _ ég—z n_—g

gn_n!al aZTS(X) 4(n_1) n (AZ)
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a_Llom ay _ O _ €4
=50 0D T2 -2)(n-3)

ou __ G
+64(1-q0) 32&2[65"6 (A3)

ga_1.n-1 a _n_—Z Gn-» n—4 &,
P ot 0/ (x") n 4n-1) n 32(n-2)(n-3) A9

NOMENCLATURE

: areaoccupied by the shell sidefluid

: radius of tubes

: concentration of solute on shell side

: molecular diffusivity

: Taylor dispersion coefficient

: pressure gradient non-dimensiondized by pU/ainaxid di-
rection of tubes

: Peclet number based on shell-side flow

: radial distance from the center of thetube a origin

: superficia velocity of the fluid on the shell side

: fluid velocity on the shell side

: position vector of the center of tubea

: coordinates (pogition vector) of the lattice points of thearray

: Dirac's deltafunction

: areafraction of the tubes

: dengity of the shell fluid

: unit cell areanon-dimensionalized by &

: viscosity of fluid

<C>,, <U>,: gpatial average of c and u over shell side

<a>, <b>, <e>, <g,>, <h>: averages of coefficientsover N tubes

inaunit cell
<A.>, <B.> <C>: averages of multipolesover N tubesin a unit
cdl

[

k4
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