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Abstract—=The pH neutralization process has long been taken as a representative benchmark problem of nonlinear
chemica process control due to its nonlinearity and time-varying nature. For genera nonlinear processes, it is difficult
to control with alinear model-based control method so nonlinear controls must be considered. Among the numerous
approaches suggested, the most rigorous approach is the dynamic optimization. However, as the size of the problem
grows, the dynamic programming approach suffers from the curse of dimensiondlity. In order to avoid this problem, the
Neuro-Dynamic Programming (NDP) gpproach was proposed by Bertsekas and Tsitsiklis [1996]. The NDP gpproach is
to utilize dl the data collected to generate an approximation of optimal cost-to-go function which was used to find the
optimal input movement in real time control. The approximation could be any type of function such as polynomials,
neura networks, etc. In this study, an agorithm using NDP approach was applied to a pH neutralization process to
investigate the feasibility of the NDP agorithm and to deepen the understanding of the basic characteristics of this
agorithm. As the approximator, the neural network which requires training and the k-nearest neighbor method which
requires querying instead of training are investigated. The approximator has to use data from the optimal control
strategy. If the optimal control strategy is not readily available, a suboptimal control strategy can be used instead.
However, the laborious Bellman iterations are necessary in this case. For pH neutralization processit is rather easy to
devise an optima control strategy. Thus, we used an optima control strategy and did not perform the Bellman iteration.
Also, the effects of congtraints on control moves are studied. From the simulations, the NDP method outperforms the
conventional PID control.

Key words. pH Neutrdization Process, The NDP (Neuro-Dynamic Programming), Congtraint on Input Movement, k-Nearest

Neighbor Method, Neural Network

INTRODUCTION

Generdly, it is often inefficient to control the nonlinear processes
with linear control methods. In order to achieve more accurate and
precise control performance, the most rigorous solution for the con-
tral of nonlinear system isto usethe optima contral trategy obtained
by dynamic optimization consdering the nonlinearity of the pro-
Cess

The optimd control strategy can be obtained using $andard Dy-
namic Programming (DP). The am of Dynamic Programming is
to find the optima time-varying input policies by minimizing the
objective function which is defined according to the specific con
trol purposes, and in mogt cases, the optimal drategy is calculated
rather numericaly than andyticdly. If the size of problem islarge,
the caculdion load can be enormous and the solution cannot be
obtained within the given sampling time even with quite a fest com-
puter. This problem is cdled as ‘ Curse of Dimensondity’ and this
meakes the orHine control usng DP virtudly impossble [Kaisare
et d., 2003]. However, as the Neuro-Dynamic Programming (NDP)
gpproach is introduced, the gpplication of DP to nonlinear processes
becomes possible and the fidld of application for NDP is growing.
This gpproach isto perform the vast amount of caculation offline,
to learn the optima grategy in a smple form of gpproximation and
to caculate the optimal drategy basad on the gpproximation of cogt-
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to-go function online. Cogt-to-go (or profit-to-go) function as a per-
formance objective function can be gpproximated by a nonlinear
function or neurd network (NN) and this can reduce the calcula-
tion burden o that the dynamic programming gpproach can be ap-
plied online. But the NN requires appropriate training before use
and the training of NN is not trivid for many cases. To avoid the
difficulty in NN training, locd gpproximation method could be used
such asthe k-nearest neighbor method (KNN).

In this study, Smulation-based DP method uggested by Kaisare et
d. [2003] isinvedigated againgt apH neutrdization process Through
the Smulations, the neurd network and the kNN method are com-
pared. An optima control of pH neutrdization processto avoid the
BdIman iteration is suggested and the effects of congraints on input
moves areinvedigated.

NEURO DYNAMIC PROGRAMMNG (NDP)

1. Dynamic Programming

A discretetime dynamic sysem can be described by an n-
dimensiond date vector x(k) and an m-dimensiond input vector
u(k) at time step k. Choice of an m-dimensiona control vector u(k)
determines the trangtion of the system from x(k) date to x(k+1)
through the following relations [Bertsekas and TStsiklis, 1996; Bry-
on ., 1999,

X(k+1)=F(x(k), u(k)) @
where F, denotes the process modd equation and h represents the
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sampling time. A generd dynamic optimization problem for such
asysgem isto find the optima sequence of contral vectors u(k) for
k=0, ..., N—1 to minimize a performance index which is related to
the cogt-to-go function.

Before defining the cost-to-go function, the one-gage-cog, gshould
be defined. Among many ways, the most popular one-stage-cost
can be chosen asfollows, with theweighting factors Q and R.

x(K), uR)={ Qx[x(k+D)~xg] } =(RxAu(K)}. @

wherek=0, ..., N—1, u(0)=u,, and x,, denotes the set poirnt.
Then the cogt-to-go can be expressed asfallow.

J(x(K)) :E{Efﬂ(x(i),u(i)) +¢h} ©)

where ¢, represents the find codt. If N isinfinite, then it becomes
the infinite horizon cogt-to-go function. It can be expressed asare-
cursveform,

JX()=ELgx(K), u(K)]+da(Fr(x(K), u(K) @

and the above equation can be shown to satisfy the Bellman equa-
tion [Bertsekas and Tsitsklis, 1996).

J (x(K)) =minE[@(x(k), u(k))] +J (x(k +1)) ©)

where E[-] denotes expected vaue and superscript * implies the
optimd vaue. For smplicity, J(x(k)) will be shortened as J (K).
Thefind god of DPisto find the input strategy u(k), k=1, ..., N-1
0 tha the optima cogt-to-go function J(k) satifies the Bdlman
equation for dl time-step k. The solution can usudly be obtained
numericdly and it suffersfrom the curse of dimensondity whenitin-
volvesthe gridding of large Sate goace dimension. In order to drcum-
vent the problem, one approach suggested by Kaisare et d. [2003]
described in the next section can be applied.
2. Simulation-Approximation-Evolution (SAE) Algorithm
The SAE dgorithm [Kasare & d., 2003] is one of the reinforce-
ment learning methods and it involves computetion of the con-
verged cogt-to-go gpproximation offling, which isdescribed in FHg. 1.
The SAE dgorithm isroughly compased of two parts Thefirgt part
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Fig. 1. Architecture for offline computation of cost-to-go approxi-
mation.

is“Smulation part.” Since the true optimal control strategy is very
hard to obtain, the smulation is performed using a suboptima con-
trol law to make training data set which is used for the caculation
of the infinite horizon cogt-to-go function (Eq. (5)) for eech date
vigited during the smulation. Then the suboptima cog-to-go func-
tioniscaculated by

A =5 o) ©

where N is sufficiently large for the system to reech a new steady
dae. The second part is “Cogt goproximation part”. In this part,
the cogt-to-go function gpproximation is performed by fitting aneu-
ral network or other function approximator to the data from “Sim-
ulation Part.” In addition to thet, Belman iteration and palicy update
procedure is performed to improve the gpproximation of the cogt-
to-go function if asuboptima contral policy isused [Kaisareet d.,
2003; Leeand Leg, 2004].
3. Cost-to-go Approximator

In the dgorithms using the neuro-dynamic programming, the per-
formance of the approximetor for the cost-to-go approximetion is
crucid. As gpproximators, the globd approximator and the local
approximator can be conddered. Globa gpproximators like neurd
network, polynomid, etc. are the parametric goproximators which
require extensive offline training, and the loca approximators like
k-nearest neighbor, kernd-based goroximator, etc. are nonparamet-
ric gpproximeators which regire extendve querying indeed of offline
traning.
3-1. Neurd Network

The neurd networks are composed of Smple computing de-
ments in pardld. These dements are ingpired by biologicd ner-
vous sysems. A neurd network (NN) to gpproximate a particular
function can be trained by adjusting the weights of the connections
between dements [Demuth and Bedle, 1998] asin Fig. 2. Because
the NN is one of globa approximator, it is difficult to confirm the
safeguard againg over egimation and the ability of extrgpolaion
even though the computation of function evauation is easy once
trained. Furthermore, the convergence for Belman iteration using
NN is not guaranteed. Thus, the training of NN is quite criticd to
the performance of the neuro-dynamic programming approaches.
3-2. k-Nearest Neighbor Method

The k-nearest neighbor (KNN) method is a very intuitive meth-
od that classifies unlabded examples based on their Smilarity with
the training set. For a given unlabeled example, x, 0 ° (O° isa
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Fig. 2. The schematic diagram for neural network training.

Input

Korean J. Chem. Eng.(Val. 21, No. 5)



944 D.K.Kimetd.

workspace), thek “doses” labded examplesin the training data set
are found and assgned as X, to the dlass tha gopears mogt fre-
quently within the k-subset. The kNN only requires an integer k, a
<t of labded examples (fraining deta), and ametric to meesure dose
ness [Osung, 2002]. The KNN can conveniently handle the quite
complex nonlinearity with sufficient data sst and training effort is
not needed. However, finding the neighboring data set may require
extendve data querying procedure. The convergence for Bellman
iteration can be guaranteed. But the query time for nearest neigh-
bor is increased in proportion to the number of training data [Lee,
2003)].
4. Bellman Iteration

Since the optima control law is not readily avalable to begin
with, a suboptima control policy can be used for training of the
cogt-to-go gpproximation, and the resulting contral law is doomed
to be suboptimal. To improve the gpproximation, the cogt or vaue
iteration can be performed until convergence based on the Bellman
equation [Kaisare et d., 2003].

J ™ =ming(x,u) +J(Fy(x,u)) 7

This ep may impose an enormous computational burden, but it
will be parformed offline

pH NEUTRALIZATION PROCESS

The pH neutrdization process has long been taken as a repre-
sentative benchmark problem of nonlinear chemica process con-
trol due to its nonlinearity and time-varying nature. In this sudy,
the pH neutradization processis sdlected as the control target system
with neuro-dynamic programming gpproach.

1. pH Neutralization Process

The neutrdization is a chemica reaction. The control objectives
are to drive the sysem to a different pH conditions (tracking con-
trol) or to regulate the effluent pH vaue despite the disturbance by
manipulating the flow rate of titrating sream [Henson and Seborg,
1994, 1997]. The processis illugtrated in Fig. 3 and the operating
conditions are shown in Table 1. The reactor type of the neutrdiza:
tion process is a continuous irred tank reactor (CSTR) with baf-
fles, which has a volume of 25L. The inlet stream congsts of a
strong acid stream (g, feed solution), aweek acid stream (q,: buf-
fer solution) and a strong base stream (qs: titrating solution), which

Coamputer

ALNIDA
Comnverier

Fig. 3. The pH neutralization process.
September, 2004

Table 1. Operating conditions of pH neutralization process

Symbols Values Stream Composition
\ 2,500 [ml] [N 0.003 M HNO;
(N 9.0[ml/g] 5.0x10° M H,CO,
0> 0.6 [ml/q] (0% 0.01 M NaHCO,
Os 8.5[ml/g] s 0.003 M NaOH
5.0x10"° M NaHCO,

are pumped to the CSTR. It is assumed thet the perfect mixing in
tank and the complete dissociation in solution at 25°C occur [Yoo,
2002]. Table1 shows the typica operating conditions of the pro-
cess of concern.
2. pH Neutralization Process Mode

Generdly, the strong acid-base reection is dways assumed to
reach equilibrium in water solution amogt ingantly. This implies
the reaction retes gpproach infinity. So, the reection rate terms can
beignored in process modd for smplification. Using these assump-
tions, Gudtafsson and Waller [1983] proposed a modd using reec-
tion invariants. As the srong acid and base solutions are com-
pletely dissociated into ions, the chemicd reactions with a wesk
acid solution reach equilibrium gate. The chemica reectionsin the
sysem are asfallows[ Yoo, 2002].

H,CO,<>HCO; +H,
HCO; <> COZ +H,
H,0<>OH +H". 6)

The equilibrium congtants for the reactions are defined as

_[HCOJ[H]  _[CO3][H]
[HCOJ] " [HCOj

The totd amount of the reaction invariant is not affected by the
degree of chemica reaction. According to this fact, the reaction in-
variants can be derived from the soichiometry. As Gudtafsson and
Waller proposed, two kinds of reection inveriant varigbles are de-
fined in this process The fird reaction invariant is the concentra:
tion of charge rdated ions, and the other reaction invariant is the
total concentrations related to carbonateions.

W;=[H]—[OH],-[HCO, ] -2[COfT];,
W, =[H,COJ+[HCO;]+[CO5 . (10

where W, denotes the charge-rdated reection invariant, W, denotes
the carbonate ion-reated reaction invariant, and i=1, 2, 3, 4 for eech
dreaminFg. 3.

The rdaionship between pH vadue and the reection invariantsis
given by a nonlinear eguation from Egs. (9)-(10) which represent
the relaion between a hydrogen ion concentration and reection in-
vaiants

Wb Ka/[Hj +2Ka1Ka/[H1 g +Wa+& _[H*] =0 (]_1.)
1+Ka/[H] +KuKa/[H] [H1

ThepH vaueisthe negaive logarithm of the hydrogen ion concen-
tration (pH=—log[H"]), s0 the pH vaue can be determined if W,
and W, are known.

The dynamic process modd for the pH neutrdization process
can be derived from the component balance for the reaction invari-
ants[Yoo, 2002]:

Kal

Ko =[H][OH] ©
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In the above dynamic process modd, it is assumed thet the flow
rates and the concentrations of the feed and buffer greams are known
except for two properties, W,, and W,,, and they are conddered as
the unknown parameters (6). Therefore, the dynamic process mod-
el can be obtained asthe following Sate space modd [ Yoo, 2002]:
x=f(x, t)+g(x, hu+F,t)6
ox, y)=0 13

where

1 0p(Wae =X1) —0iXs 1 W
f(x,t){ 2\ a2 AL (. t) == ,
v 01(Wp1 =X2) — 02X v b3 X2

Fo(t) :\l/|: % 0 j|v 0=[ Wy sz]T-X =[ Wa, Wb4]T,

00
U=0p, y=pH,, pK,=—10gK;, pK,=-logK,
Y ~pK2
c(x,y) :)(1+]_0r14 -107Y +X2&. =0.

1+1077 +10' ™ -

3. Optimal Control Strategy

The suboptima contral law is used in the “Simulation Part” of
SAE dgorithm. If the suboptima control is close to optima con-
trol, the improvement of cog-to-go function by Bdlman iteration
is not necessary. Fortunately, in this process, an optima control can
be devised from a smple principle. The required flow rate of titrat-
ing dream to make the mixture of inlet sreams with the desired
pH vaue can be cdculated from the informetion of the inlet Sreams
and the additiond amount of titrating stream to make the contents
of the CSTR at the desired pH vdue hasto be injected in ashortest-
possibletime. In this manner, the effluent pH vaue can be reeched
to the desred value in shortest time without overshoot or under-
shoat. This control law is not exactly optima due to the residence

time of the effluent sream congdering the condraints of the flow
rates, but it is dose enough to the optima control law. Moreover,
the amount of additiond injection of the titrating stream can be ad-
justed to make the performance better. By using this optimd grat-
egy, the laborious Bellman iteration is omitted in this udy.

RESULTS AND DISCUSSIONS

The NDP gpproach is goplied to the pH neutrdization process
both using a global gpproximetor (NN) and a nonparametric local
goproximator (KNN).

1. Results using Neural Network

As an gpproximator, amultilayer feedforward NN isused, which
condgs of two input gates, 5-neuron hidden layer, and 1-neuron
output layer. The weighting factors of one-stage-cogt function are

o
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N
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0.01 Y
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(=]

time Iminl

Fig. 5. Comparison of results between PI contrdl (---) and NDP
approach usng NN (—) with regpect to multi-sep st po-
int change (pH 7—8—>55—7).
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R=1and Q=1. For training of NN, the optimal control law described
in the previous saction is used to generate the training data. The com-
parisons of the results between well-tuned P control and NDP for
agtep changein set point (effluent pH 6.3—7) are shown in FHg. 4.
The NDP is much better than Pl control as shown Fg. 4. The case
of multiple gep changesin st point and the digturbance case in feed
concentration (W,, change at 10 min) are depicted in Fig. 5 and 6,
respectively. From these reaults, the NDP method outperforms the
well-tuned PI control as expected. However, the weighting factor
of the one-stage-cogt function on error has to be increased to get
rid of smdl seady-date offset. The amd| steedy-date offset in NDP
method is caused from the numerica inaccuracy of the NN cacu-
lation. In order to overcome this difficulty, either more data around
the steady state should be used for training, or the weighting factor
for error in one-gtage-cost has to be adjusted to emphasize theim-
portance of the error from set point.

71
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2. Reaults usng k-Nearest Neighbor Method

Alternatively, as a locd gpproximetor, the KNN method is dso
applied. The kNN method does not reguire tedious training as in
NN approach and it is very smple to gpply. Since the process of
our concern is relaively Smple, avery good performance of NDP
method can be obtained even with only two points nearest neight
bor. The performance usng kNN method shown in Fg. 7 isamost
same asthe case usng NN. Thisis because the modd we used has
only two gtates and the nonlinegrity is not very high. If the process
hes very complicated nonlinear behavior with many dates the train-
ing of neurd network is not trivid, and marny computationd issues
regarding training and Bellman iteration can be brought out.
3. Results with Restriction in Au,

In the cases of previous section, the Smulation results are ob-
tained with no regtriction in the Sze of control movement in one
sampling time (Au,,) even though there were the lower and upper
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Fig. 7. Comparison of results between NDP approaches using kNN (4) and NN (—) with respect to set point change (pH 6.3—7).
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limits of the contral input Sze (O<u<0.025 I/sex). Bt if thereisa
regriction in Au,,, the NDP control strategy cannot handle the sit-
ugtion correctly. For example, for a step change in s&t point, NDP
method will caculate the additiona amount of titrating stream in-
jection without considering the limitation of the control moves in
eech sampling time and the response may oscillate and the perfor-
mance will be deteriorated. The NDP controller will increase the
control input to inject the needed amournt of titrating streem to com-
pensate the difference in the holdups in CSTR assuming that it can
gtop injecting immediatdy when needed. However, due to the limi-
tation of control input movement, it cannot decrease the titrating
dream to desired leve in asampling time. Thus, it resultsin over-
injection and the process will overshoot and oscillate to compen-
sate the over-injection of the titrating sream. The sandard NDP
only triesto push the sysem to the new Sate asfadt as possible under
given condition and not to moderate the amount of additiona in-

% 1 2 3 4
time [min]
(a) pH change

jection congdering the limitations and results in overshoot and os-
cilletion. In order to prevent this shortcoming, the sandard NDP
has to be modified to accommodate the situation. Thus, we suggest
that the recursve cogt-to-go function caculation should be mod-
ified in the following way.

p+k

XA (14)

If p=1, Eqg. (14) is same as Eq. (5) of origind neuro-dynamic
gpproach and if p=co, it becomes origina dynamic programming
(DP). This maodification increases computationa burden to find the
optima input at time step k, but this can prevent the performance
degradation due to the condraints on the input change. Fg. 8 shows
the performance of the new approach (Au,,,=0.0025 I/sec) and the
overshoot can be reduced sgnificantly in the new gpproach. Also,
the decrease in overshoot for theincreasein pis obsarved. Thisap-
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Fig. 8. Comparison of resultsfrom M PC-like NDP approach usng kNN with Au,,,, retriction (in Eq. (14) p=1 (——) and p=4 (-++)).
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Fig. 9. Comparison of results between sandard NDP approach (-

[S—
Ptstaporapen |

peunnuuat

nfuan,
(L1

=0.008 - s
=0.006 I
0.004
[
0.002, 0.5 1 1.5 2
time [min]
(b) Input change
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when thereis Au,,, restriction (In the case of NDP approach using KNN).
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proach is to incorporate the prediction capability asin Modd Pre-
dictive Control (MPC) to prevent the performance deterioration due
to incorrect information of the process.

Anather, yet better gpproach to resolve this sort of problem isto
incorporate the input as a deae in the codt-to-go goproximeation. If
we add the information on input to the approximator in NDP d-
gorithm, then the NDP method with augmented dates will con-
sder the vaue of input variable and cdculate the required amount
of the injection based on the correct information on the process. In
Fg. 9, the performance of this approach is shown and the response
did not overshoot and provided an excdlent performance. In MPC-
like gpproach, the NDP method resulted in a smal overshoot even
with p=4. However, this gpproach provided better performance with
dight increase in computationa burden which isadmost negligible.
Furthermore, even for the digurbances, the NDP controller with
augmented gtates shows good results asin Fig. 10.

CONCLUSIONS

From the Smulation of apH neutrdization process, the NDP meth-
od using either the globa gpproximator (NN) or the loca gpproxi-
mator (KNN) outperforms the well-tuned PI control. These results
are not surprising because NDP method uses much more informa:
tion and computation. However, if the process is quite complex,
this goproach can achieve precise optima contral performance with-
out excessive online computetiona burden. In this sudy, the NDP
approach is gpplied to a chemica process of pH neutrdization and
the possibility of applying DP concept even with short sampling
period to complex nonlinear chemica processssis veified. In tarms
of offline preparation of NDP approach, the locd approximators
such as kNN are preferred over globd approximators in the light
of cost-to-go gpproximation. Also, the remedies for the cases of
limitation in input movement are suggested.
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NOMENCLATURE

E[] :expected vaue

F, :processmode equation

J : optimal cogt-to-go function

K Ka K, 2 equilibrium constant in Eq. (9)

Q :waeighting factor of error in the one-stage-cost

R :weighting factor of input change in the one-stage-cost

V  :reactor volume[ml]

W : concentration of reaction invariant [M]

h  :samplingtime

pH :pH valuefor stream

g :flowrate[ml/sec]

X(k) :n-dimensional state vector at time step k

Xy :Setpoint of state

u(k) : m-dimensional input vector at time step k [1/sec]

Au  : input movement during one sampling time [l/sec]

Au,,, : the maximum alowable input movement during one sam-
pling time [I/se]

Gregk Letters
@ :one-stage-cost
@ :fina cost

6  :unknown parameter

Super script
* : optimal value

Subscripts

a :hydrogenionrelated reaction invariant
b  :carbonicionrelated reaction invariant
1 : feed stream
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N

: buffer stream
3 : base stream
4 : effluent stream
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