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Abstract—In this work, we propose a PID control strategy based on the genetic algorithm coupled with cubic spline
interpolation method for the control of pH processes. The control scheme proposed in the present work consists of
closed-loop identification based on the genetic algorithm and cubic spline method. First, we compute the parameters
(K¢, 1, Tp) of the PID controller using relay feedback and apply these parameters to control the pH Process. Then
approximate linear models corresponding to each pH range are obtained by the closed-loop identification based on
closed-loop operation data. The optimal parameters of the PID controller at each pH region are then computed by using
the genetic algorithm. From numerical simulations and control experiments we could achieve better control perfor-
mance compared to the conventional fixed gain PID control method.
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INTRODUCTION the union of local controllers based on the membership function of
the local linear models.

PID (Proportional-Integral-Derivative) controllers are most widely ~ So far tuning of PID controllers has relied mainly on open-loop
used in various operational fields. But it is well known that they analysis. But usually the open-loop test is prohibited in operating
are not efficient in the control of nonlinear processes. In this workplants and disturbances and noises may cause unexpected control
we propose a new gain scheduling PID control strategy based ogrrors during closed-loop operations. The closed-loop identifica-
closed-loop identification and genetic tuning method coupled withtion has attracted much attention [Van den Hof, 1997; Hjalmarsson
cubic spline interpolation method for the control of pH processeset al., 1996]. The reason may be that the plant is unstable, or that it has
The pH process is a typical nonlinear chemical process and the cote be controlled for production, economic, or safety reasons. More-
trol of the process has attracted concerns of many researchers. over, the operation data can be directly used to identify the plant

Klatt and Engell [1996] proved experimentally that gain sched-model without additional treatment. Ljung and McKelvey [1996]
uling trajectory control is more efficient control strategy comparedinvestigated the subspace identification method which calculates
to the PI control. In their experiments the pH region tested was 6-1the state-space model from the closed-loop data. They proposed a
which can be approximated linearly. It was shown that gain schednew closed-loop identification method that showed better perfor-
uling based on fuzzy theory exhibits improved control performancemance than existing N4SID.
than conventional PID controllers and that the performance of a In the gain scheduling control scheme proposed in this work the
well tuned PID controller is as good as that of a model predictivePID controller parameters (K1, 1,,) are first obtained from the
control scheme especially in thermal control problems [Blanchettrelay feedback. These preliminary controller parameters are employed
et al., 2000]. Application of the artificial neural network to control in the control of a pH process, and closed-loop operation data is
pH processes has been reported [Loh et al., 1995]. They dividedollected. From the closed-loop identification we get approximate
the system into static and dynamic parts and proved that the corinear models for each range of pH values. These linear models are
troller shows good control performance for various external noisaused in the computation of optimum tuning parameters based on
variables. The authors designed a PID controller based on the artifthe genetic algorithm. These optimal tuning parameters are inter-
cial neural network and showed experimentally that the controllerpolated by the cubic spline method to be applied to the gain sched-
gives good performance both for load change and set point changder.
to pH processes [Kwon and Yeo, 1999]. The pH control problem
based on the adaptive bilinear model predictive control has been pH NEUTRALIZATION PROCESS
investigated both theoretically and experimentally [Kim et al., 2000].

Zhang [2001] constructed a nonlinear type controller that was cou- The pH process is widely used in various areas such as the neu-
pled with some local nonlinear controllers by using neural net-tralization of industrial waste water, the treatment of boiler feed water
works and fuzzy schemes. Control commands are obtained fromand cooling water in the cooling tower, and the maintenance of the
desired pH level at various chemical reactions, coagulation and pre-
cipitation processes. The pH process shows high nonlinearity dur-
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this reason the use of conventional PID controllers requires very.

small operational range to achieve acceptable control performance.
The model of the pH neutralization process used in this study

follows that proposed by McAvoy et al. [1972] as shown in Fig. 1. at several pH regions.

Assumption of perfect mixing is general in the modeling of pH pro-

ig. 2. Titration curve (H;PO,/NaOH).

cesses. Material balances in the reactor can be given by CLOSED-LOOP IDENTIFICATION METHOD
Vdd—);a =F,C, +(F, *F,)X, In the use of the ultimate gain method the increase of the gain to
q reach the critical point might drive the system to the unstable re-
Vd_);b =F,C, t(F, *F)%, @ gion. The relay feedback method is introduced as a substitute for

the ultimate gain method. This method is also called auto-tuning
where G represents the concentration of the acid inlet stregm, Cmethod. This method is widely used in most commercially avail-
represents the concentration of base used in the neutralization, &ble PID controllers.

and x are the concentration of acid ion and base ion in the reactor, First, a relay feedback signal generator replaces the controller.

respectively. Fdenotes the flow rate of acid inlet streapep- The output of the relay feedback signal generator is represented as
resents the flow rate of base used in the neutralization and V is the
volume of the reactor. m(t) _d d for e(f) =—c(t)>0 ®

The phosphoric acid RQ,) and the sodium hydroxide (NaOH) 0-d for e(f)=—c(t)<0

are used in the experiments. The phosphoric acid in water decom-
poses into a phosphoric ion and three hydrogen ions. At 298 K, diswhere d is the output of the controller multiplied by 0.5, e is the

sociation constants for each ion are given by error and c is the output of the process. The ultimate gamtien
. g given by
H:PO, - H tH,PQ,, K,
=[H'][H,PO}[H,PO] =7.11x 10° @ _4d
Ko = pry 9)

H,PO, » H +HPC,, Ko,
=[H][HPCG I/[H,PO,] =6.34x 10° @) where A is the amplitude of the process output. PID parameters can

L i . i i be easily determined by conventional tuning methods such as the
HPO” - H +PQ], K, =[H[PO[I/[HPO]=4.2¢ 10" (4)  Ziegler-Nichols method:

The equilibrium constant of water at the same temperatuggis K k =k_/1.7,t=P/2.0,17,=P,8.0 (10)

10 Reaction invariants can be written as ] ) .
where Ris the ultimate period.

X, =[H:PQ] +[H,PQ] +[HPO]] +[PO]] ©) The identification of plant models has traditionally been done in
—rnat the open-loop mode. The desire to minimize the production of the
x, =[Na] 6) . A
off-spec product during an open-loop identification test and the un-
The equilibrium equation for ions from which pH is calculated stable open-loop dynamics of certain systems has increased the need
is given by to develop methodologies suitable for the system identification.
1094 (K_ x)} 109+ (K K K K, —K X)X 10" Open-loop identification techniques are not directly appllcqble
g ~ o to closed-loop data due to the correlation between process inputs
H(K K XK K oK oK 1K, 2K K %)% 107 . .
K KK XK K K, ~BK K K X )10 K K K K =0 (7) (i.e., controller outputs) and unmeasured disturbances. Based on
aee Trater s e Prediction Error Method (PEM), several closed-loop identification
Fig. 2 shows the titration curve obtained from the above modelmethods have been presented [Forssell and Ljung, 1999]: direct,
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R, W What we try to find is the simplest model that can describe the sys-
. . tem fairly well. In the subspace identification, the reduced model
¥ G G . can be obtained directly, without having to be constructed from the
R A E C + U P + Y .
1 high order model.

There are many different algorithms in the subspace identification
field, such as N4SID [Van Overschee and Moor, 1994], MOESP
[Verhaegen and Dewilde, 1992] and CVA [Larimore, 1990].
indirect, joint input-output, and two-step methods. Recently, Ljung and McKelvey [1996] investigated the subspace

identification method which calculates the state-space model [Eq.

1. Direct method: Data from the closed-loop test are treated as if11)] from the closed-loop data.
they were from open-loop operations. PEM is applied to the data
set ignoring the presence of the feedback. Only input U and output

Fig. 3. Block diagram of a closed-loop system.

X(t+1)=Ax(t)+Bu(t)+Ke(t) (11)

Y are needed to perform the identification. y(t)=Cx(t)+Du(t)+e(t) (12)
2. Indirect method: First, the closed-loop transfer function is ob-
tained by using the signal Bnd Y or Rand Y since the external We can summarize the basic steps of subspace identification as

injected signal will be uncorrelated with the noise in the output. Thenfollows:
the controller transfer function is used to extract the process trans- ) )
fer function from the closed-loop transfer function (Fig. 3). 1. Estimate states x(k), k=0, 1, 2, .=1jfrom measured pro-

3. Joint input-output method: Closed-loop system is considered€Ss inputs and outputs.
as a black box with fictitious white noise signal. The external input 2 Estimate the system matrices (A, B, C, D, K) from the esti-
signal is considered as the input and the process input U and oudated states using one of the following methods:
put Y as the output. Since the newly defined input and output will
not be correlated, the joint model can be identified accurately. Method 1: .

4. Two-step method: The so-called sensitivity function is obtained 1) Using LS (Least Squares) method, estimate C and D from Eq.
from the external signal R and the process input U. The noise fre€!2)- The residual is e(k), k=0, 1, 2, .=2j
process input is reconstructed from this sensitivity function and then i) Using LS method, estimate A, B and K for the Eqg. (11) (note
used with the process output to identify the process model. th?\t/l Wti kS;W the residual e(k) from the previous step).

ethod 2:

However, the methods described above require a priori knowl- 1) Using LS method, estimate A, B, C and D and resignals
edge on the plant order and time delay. The identifiability can be€(0) &(1) ... et 2)] and byp,=K[e(0) e(1) ... ef-2)]
guaranteed under mild conditions. The newly developed, so-called
the open-loop subspace identification method has been proven to {X(k +1)} { AB H X(k)} { Ke(k)} 13)
be a better alternative to the traditional parametric methods. Thisis | Y(K) CD [ u(k) e(k)
especially true for high-order multivariable systems, for which it is
very difficult to find a useful parameterization among all possible
candidates. o K =ppllp.0}] (14)

The subspace identification method has its origin in classical state-
space realization theory developed in the 60s. It uses the powerful In the above steps, we decide the state by SVD. The future out-
tools such as Singular Value Decomposition (SVD) and QR fac-Puts are given by the following equation with future inputs and noises
torization. No nonlinear search is performed nor is a canonical pabeing set to zero:
rameterization used. The advantages of the subspace identification

ii) From the residuals, estimate K by

na nb
method can be summarized as follows: y(k +i) =mz=10A Huy(k —m) + m;CA Hu(k—m)
1. No prior model set assumption: In subspace identification algo- +mz=10A'7mBU(k +m—1) +Du(k +i)
rithms, we use full state space models and the only “parameter” is i ) o '
the order of the system, which can be obtained by inspection of cer- +mZ=10A' "Ke(k+m—1) +e(k+i),i=0, 1,2, ...,+1(15)

tain singular values. When using the traditional PEM method, a mod-

el set is needed and what one gets from the identification is, in fact, If the test data sets are gathered from open-loop tests, we apply

only the best model in this particular model set. the LS method to Eq. (15). The solutions are unbiased since the pro-
2. Numerical Efficiency: This method is not iterative and so therecess inputs are uncorrelated with process noise terms. But, if the

are no convergence problems. By using the always numerically reprocess input is a function of the process noise as in the closed-loop

liable SVD, numerical robustness of the identification proceduretest, the solution for CA,, CAH,,, CA™B and D would be biased.

can be guaranteed. By using QR factorization, the efficiency carTherefore, subspace identification methods for the open-loop test

be greatly improved. give biased estimation results regardless of the accuracy of each
3. Model reduction: Complex models can describe a system moretep. This is the main problem in the subspace identification meth-

accurately, but, at the same time, they are more difficult to applyod for the closed-loop system.

January, 2004
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We can assume D=0 for usual processes since almost all prdz=rror) are widely used. The ITAE criterion can be effectively used
cesses have at least one delay between the process output and tteen the errors persist for long time periods. In the pH control pro-

process input. Then, Eg. (15) becomes cess, frequent change of the magnitude of errors with respect to time,
. o rather than persistence of errors, make the control problem very com-
y(k +i)=> CA'Hyy(k —m) + 5 CA'H u(k —m) plicated. In the optimization of the present study, the ISE was cho-
m=1 m=1

. sen as the objective function to achieve minimal control errors:
+% CA""Bu(k +m—1) )
= min ISE=[ e(t’dt (20)

+3 im +m-1) +e(k+i) . i= ;
mZ=1CA Ke(k+m-1) +e(k+i),i=0,1, 2, ...,+1 (16) SUBJECt 0 K 1, <K <Ke er

TI,Iow<TI<TI,upper
TD, Iow< TD< TD, upper

If i=0, Eq. (16) becomes a high order ARX (Auto-Regressive
with exogenous) input model as
Tuning parameters (K1, 1) for the PID controller are obtained

y(k) = E CHYLy(k —m) + ”zb CHu(k—m) +e(K) 17 by the genetic optimization consisting of selection, mutation and
m=1 m=1 Crossover operations.
It should be noted that the process input-jkis a function of the Optimization methods based on the gradient information such

past process outputs (K1), m=1, 2, ..., na for usual feedback 25 QP (Quadratic Programming) and SQP (Sequential Quadratic
controllers and that the process inputs-u, m=1, 2, ..., nb are Programmlng) etc. often reagh to local minimum dependmg on the
uncorrelated with e(k). Therefore, if we apply LS method to the Ch0ice of initial values. For this reason GA is our choice for the op-
ARX model given by Eq. (17), we obtain unbiased estimates of P timization. In the solution of an optimization problem by using the

P, for and CH, GA the key steps to be followed can be summarized as:
(k) :§ Py(k—m) + ”Z" P,u(k—m) (18) 1. A chromosomal representation of solution to the problem.
=1 =1 2. Creation of an initial population of solutions.
3. Evaluation of a function that plays the role of the environment,
y(kk)  y(k+1k+1) - y(k+j —1k+j —1) rating solution in terms of their “fitness”.
y(k+1k)  y(k+2k+1)-  g(k+jk +j—1) 4. Choice of a set of operators used to manipulate the genetic
y(k+2k)  y(k+3k+1)- g(k+j+1k+j—-1) composition of the population.
; : : 5. Determination of parameter values used in GA (population
y(k+i—1K)  y(k+ilk +1) =-J(k +i +j —2/k+] - 1) size, probabilities of applying genetic operators).
=[U, U ]{ 210}{ VI} —U.s VT (19) First, a population of individuals is created. In its simplest form
1 2. 1“1Vl . P . . . . . ..
0 T each individual in the population consists of a string of binary digits

which may also be referred to as bits. Chromosomes are bit strings -
The elements of the first column in Eq. (19) can easily be obtainedists of 0's and 1's. There are a variety of techniques for mapping
from Eq. (18). Subsequent steps for the state estimation and the syt strings to different problem domains. The initial population of
tem matrix estimation are exactly the same with those of previousndividuals is generated randomly within certain boundaries. Each
subspace identification methods for open-loop test. Those methodadividual is run in the current environment to determine its effec-
do not require knowledge on the order and the time delay of théiveness which is assigned a numerical evaluation of its merit by a
process. fitness function. The fithess function determines how each gene

In order to adapt the method to a nonlinear pH control procesgbit) of an individual will be interpreted.

we first perform control of the pH process at broad range of pH us- There are many properties of the evaluation function that enhance
ing a conventional PID controller to get closed-loop data. In thisand hinder GA performance. Therefore, each structure is evaluated
case large control errors might result due to the nonlinearity of theccording to specific domain criteria and assigned a measure of rating
process. The overall pH region is inherently nonlinear, but the narer “utility”. All the individuals in the population have been evalu-
row region can be approximated as linear. We can divide the datated and their fithesses are used as the basis for selection, which is
according to pertinent pH regions and calculate parameters of théetermined by the standard deviation. Selection probabilites are

linear state space model through closed-loop identification. then computed for each structure based on its utility, with propor-
tionally higher probabilities assigned to higher utility structure. As
GENETIC TUNING METHOD a result, selection is implemented by eliminating low-fitness indi-

viduals from the population and inheritance is implemented by mak-
The genetic algorithm has been investigated and employed espig multiple copies of high-fitness individuals.
cially in optimization studies for more than 30 years. The main ad- Genetic operations such as mutation, crossover and inversion
vantage of the use of the genetic algorithm in optimizations lies inare applied probabilistically to the selected individuals to produce a
improved possibility of finding the global optimum [Goldberg, 1989; new population (or generation) of individuals. Crossover takes two
Kim et al., 2001]. As the objective function in the optimization, both selected current generation structures, splits the string at the same
ITAE (Integral of Time-Averaged Error) and ISE (Integral of Squared randomly determined point and then creates the new generation struc-

Korean J. Chem. Eng.(Vol. 21, No. 1)
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tures by swapping the tail portion of the string. Mutation, on the GA in this work lies in the fact that the optimization methods based
other hand, randomly changes a bit in a structure thereby introdu@n the information of gradients such as SQP (Successive Quadratic
ing a new individual. This operation is assigned a very low per-Programming) can fail in the identification of the optimum values.
centage of action, causing it to function as a background operation. Cubic spline is one interpolation method that connects each data
By transforming the previous set of good individuals to a new onepoint in soft curved line. The optimum values of control parame-
the operator generates a new set of individuals that have a bettrs (K., 7, 1) for each interval pH region are obtained by using
than average chance of also being good. Each combination of genettee cubic spline method to apply to the gain scheduler.

operators, representation, and problem has it own characteristics.

Tuning of PID parameters by GA can be summarized as follows: NUMERICAL SIMULATIONS
Step 1. Create the initial population for tuning parameters (K In the simulations MATLAB and SIMULINK were employed
T, Tp). for the pH control process. The sampling time was set to 5 sec and
Step 2. Calculate ISE for step response using closed-loop corthe time delay of sensor to 5 sec. Random noise8. % to pH
trol system about the approximated process mGdel (). were assumed.
Step 3. If the criteria are satisfied, stop computation. If not, go to First, we applied the relay feedback signal in the range of pH 7-
the next step. 8, and then we obtained the ultimate gain and ultimate period from

Step 4. Select superior chromosomes that have low ISE value. which control parameters (K7, 1) were calculated by Ziegler-
Step 5. Create the new population,(K, 7,) using crossover/  Nichols method. Next, we changed the set point by making use of

mutation. the same control parameters as before. As can be seen in Fig. 5,
Step 6. Compute the ISE value for the closed-loop control syswe have poor control performance because of the use of inappro-
tem based on the results of step 5 and go to step 3. priate control parameters. The good control performance for the set

point of pH 7-8 is compared to the poor control results when the
The schematic diagram showing the GA tuning for the PID con-set point lies in the region of 5 or 10.
troller is given in Fig. 4. The control data shown in Fig. 5 were classified according to
In the computation of parameters for the PID controllgr tK the pH regions. The linear process models for each region were ob-
T,) to be used in the state space model, GA is used to minimize thiained by using the closed-loop identification method. For each linear
ISE (Integral of Squared Error), i.e., to minimize the discrepancymodel we set up the PID controller and calculated the control pa-
between the process output and the set point. The reason we u

Generation =0

.

2 L L 1 1 L L
Initial population for K., 7,, 7, 0 500 1000 1500 2000 2500 3000

Calculate ISE for step response
/1oad disturbance using G,

Yes
Criteria satisfied? ] |
0 500 1000 1500 2000 2500 3000
\ 4 No Time
C END ) Generation-++ Fig. 5. The result of control by conventional PID controller.
v
Selection Table 1. Optimal parameters of the PID controller at each pH re-
gion

v pHO4.0 K.=6.13 1,=48.90 1,=0.39

Crossover & Mutation pHO5.0 K.=4.85 1,=24.02 1,=1.01

v pHO6.0 K.=8.70 1,=105.67 1,=1.84

Calculate ISE for step response pHB;.O Kci&?l T'i199'94 TDi2'23

/ load disturbance using ¢, pHLB.0 Ke=8.22 1=200.21 =052

L pH©.0 K.=6.57 1,=73.80 7,=1.63

Fig. 4. Flow diagram of GA tuning of the PID controller. pHL10.0 Kc=4.02 1=198.32 ,=1.05
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Fig. 6. Changes of controller parameters (K, 7,, Tp).
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Fig. 7. Schematic of the PID control based on gain scheduling.

rameters from the minimization of ISE by GA. The numerical re-
sults are shown in Table 1. % 500 1000 1500 2000 2500 3000
The next step is the proper interpolation by the cubic spline tc Time
obtain optimum control parameters for each pH region listed in Table_. i ) )
1. Fig. 6 shows the change of each parameterr(k,) in the re- Fig. 8. The results of PID control using gain scheduling.
gion of pH 4-10 and Fig. 7 shows the structure of the feedback con-
trol loop using a cubic spline interpolation for the gain scheduler.
The gain scheduler receives the current pH value as an input ar

AD/DA Converter

gives the optimum control parameters as outputs. These paramete r I :
are then plugged into the PID controller. Fig. 8 depicts the results o Y No;se
PID controls by using gain scheduling and shows better control pet | Rier | Acid
formance compared to the conventional PID controller (Fig. 5). We I | i | Solution
can see that the PID control parameters at each pH region are pro v feomt '
erly changed. = = v/i pH v/i
- ==10=| | Converter Meter Converter
EXPERIMENTS coomn $4-2om
Y

Fig. 9 shows the experimental equipment used in the present stuc
In the experiment we used phosphoric acid and sodium hydroxid
as acid and base, respectively. Phosphoric acid was fed to the r
actor with constant flow rate and NaOH was introduced to the re:
actor through the pump being controlled by the gain scheduling con
troller. Concentrations of phosphoric acid and NaOH wer€.02
mol/L and G=0.05 mol/L respectively. The flow rate of phospho-
ric acid was kept constant as=8.1188 L/min while the range of

the flow rate of NaOH wasg,£0.0-0.2532 L/min. NaOH

In the experiment a PC with Pentium Il processor (650 MHz)
was used and the control algorithm developed in the present workig. 9. Experimental apparatus.

Korean J. Chem. Eng.(Vol. 21, No. 1)
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was implemented by using SIMULINK of MATLAB. The vol- using the ultimate gain method of Ziegler-Nichols based on the am-
ume of the reactor was 2 L and sampling time was set to 2sec. plitudes and ultimate periods at pH 7. The controller parameters
Fig. 10 shows the results of control experiments by the convenwere obtained by using the ultimate gain method of Ziegler-Nichols

tional PID controller. The controller parameters were obtained by
10

I
6 % ] 3000
4 ] 2000
2 ! ! ! ! e
O 1000 1500 2000 2500 3000 1000

Mn il 'H [ i
E o | PR - ,
P h) i} o s

Fig. 10. Results of conventional PID control (ISE=921.52). Fig. 12. Changes of controller parameters (K 7., To).
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Fig. 13. Result of PID control using gain scheduling and GA (ISE=
Fig. 11. Results of PID control using gain scheduling (ISE=1776.55). 701.2).
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based on the amplitudes and ultimate periods at pH 7. Control errois  : influent stream flow rate [L/min]
in experiments are indicated by ISE. The radical behavior of the=, :influent stream flow rate of acid [L/min]
pump as shown in the Fig. 10 reflects the noise of the electrical sign&,  : influent stream flow rate of base L/min]
generated by the differential term (D) in PID parameters. GA : genetic algorithm
Fig. 11 represents the results of gain scheduling control experiK. : P parameter of PID controller
ments based on the cubic spline interpolation of the PID paramePID : proportional-integral-derivative controller
ters obtained from the relay feedback. We can see the proper chandes : period of controller
in the PID controller parameters according to the changes in pHt : time [min]
Even with the smooth behavior in the pump compared to the conx,  : reaction invariant of acid
ventional PID control (Fig. 10) the control performance is not sat-x,  : reaction invariant of base
isfactory. Fig. 12 shows the change of each parameter, (K;) V  :volume of reactor [L]
in the region of pH 4-10 with GA tuning and Fig. 13 shows the ex-
perimental results of gain scheduling control coupled with GA. Ap- Greek Letters
proximate process models at each predefined pH region were oli;  : | parameter of PID controller
tained first by the closed-loop identification method using the exper-t,  : D parameter of PID controller
imental input-output data (Fig. 10) previously obtained. Then the
optimal parameters of the PID controller to be implemented were REFERENCES
computed by using GA. Optimal parameters were interpolated with
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