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Abstract−−−−This paper explains the origin of our previous observation that, when a silsesquioxane-based low-k film
is etched in fluorocarbon plasmas, the thickness of a surface modified layer, in which cage-like Si-O bonds are
dissociated to extents greater than a specified level, changes linearly with log[F]2/[CF2], where [F] and [CF2] denote
concentrations of F and CF2 radicals in the bulk plasma. During the etching process, the substrate consists of three
distinct layers: a fluorocarbon layer, a modified surface layer, and an unmodified layer. F density at the interface
between the fluorocarbon and the modified surface layers, denoted as F0 in this study, is determined in proportional
to [F]2/[CF2], and the density decreases exponentially with the film depth. As a result, the thickness of the modified
surface layer changes in proportion to a parameter, log[F]2/[CF2].
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MAIN TEXT

In the recent fabrication technology of integrated circuits, low
dielectric constant (low-k) materials are used to solve an RC delay
problem in interconnects. Introduction of low-k materials requires
the etching of complex structures and, accordingly, it is important
to understand the etch characteristics of low-k materials, in order to
better control the etch process and eventually obtain desirable etch
profiles.

In our previous study [Hwang et al., 2002], we investigated etch
reaction pathways of a silsesquioxane-based low-k material in fluo-
rocarbon plasmas and demonstrated that cage-like Si-O bonds, which
constitute characteristic bonds of silsesquioxane-based low-k mate-
rials along with network Si-O bonds and play a key role in low-
ering the dielectric constant, were readily dissociated by reaction
with F radicals even under process conditions of low ion energy.
As a result, the surface of the low-k material exposed to a fluoro-
carbon plasma was modified such that the amounts of cage-like Si-
O bonds in the layer were smaller than those contained in the orig-
inal material. By correlating the amounts of Si-O bonds retained in
the substrate with concentrations of radicals in the bulk plasma under
various process conditions, it was finally proposed that the thick-
ness of the modified surface layer was linearly proportional to log[F]2/
[CF2], where [F] and [CF2] denote concentrations of F and CF2 rad-
icals in the bulk plasma and were measured by actinometry using
optical emission spectroscopy (OES) [Coburn et al., 1980]. How-
ever, this linear relation was empirically obtained just by a fitting
method and the basis of the above relation was not clear in the pre-
vious study and, accordingly, we carried out this study to better un-
derstand the origin of the relation based on experimental evidence.

Hydrido-organo-siloxane-polymer (HOSP), a typical silsesqui-
oxane, was spin-coated on a p-type Si wafer, and sequentially baked

on a hot plate at 150, 200, and 350oC for 1 min to eliminate sol-
vent inside the film. After baking, the wafer was cured at 400oC
for 1 h in an N2 atmosphere.

Etching experiments were implemented in a transformer c
pled plasma (TCP) etcher, which was previously described [Ch
al., 1999]. CHF3 was used as an etching gas and was supplie
5 sccm through a gas diffuser. The pressure was fixed at 10 m
a source power at 600 Watt, a bias voltage at −100 V, and the cath-
ode temperature at 15oC. Samples, 1.5 cm×1.5 cm in size, we
placed and etched on an Si wafer, which, in turn, was fixed to

Fig. 1. Peak area ratios of cage-like Si-O and network Si-O bonds
contained in HOSP film etched in fluorocarbon plasmas
under various process conditions as a function of (F radi-
cal density)2/(CF2 radical density) in the bulk plasma. Cited
from [Hwang et al., 2002].
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cathode. After partial etching, the F depth profile of the film was
obtained by Auger electron spectroscopy.

Fig. 1, presented in our previous study [Hwang et al., 2002], shows
that d(Ac/An)/dX changes linearly with log[F]2/[CF2]. Here, Ac and
An mean the amounts of cage-like Si-O bond and network Si-O bond
peak obtained in infrared spectra of the substrate, and X is the thick-
ness of a HOSP film after etching. Each value of d(Ac/An)/dX was
obtained from a plot of Ac/An’s for different X values obtained by
varying the etch time under the same process condition. This plot
shows a linear relation between Ac/An and X. The slope, d(Ac/An)/
dX, means the relative dissociation rates of cage-like Si-O and net-
work Si-O bonds, i.e., the extent of modification in the surface layer.

During etching with fluorocarbon plasmas, the substrate con-
sists of three layers as schematically shown in Fig. 2: a fluorocar-
bon layer, a modified surface layer, and an unmodified layer. These
layers are under a steady state as a result of balance between etch-
ing and deposition (or diffusion in the case of a modified surface

layer) [Rueger et al., 1997]. Thickness of the fluorocarbon la
has been reported to be proportional to [CF2] and inversely propor-
tional to [F] in the bulk plasma [Zhang and Kushner, 2001] and
a result, the diffusion rate of F radicals through the fluorocarb
layer should change linearly with [F]/[CF2]. This means that F den-
sity at the interface between the fluorocarbon layer and the m
fied surface layer, F0, is proportional to [F]2/[CF2], i.e., the multipli-
cation of F radical concentration in the bulk plasma, [F], and 
diffusion rate of F radicals, [F]/[CF2].

Fig. 3 shows the depth profile of F density in the HOSP film etch
in a CHF3 plasma, which was obtained by Auger electron spec
scopy after removal of the fluorocarbon layer. F density decre
exponentially with an increase in the depth and it can be expre
as the following.

F(x)=a F0 exp(−bx) (1)

where x is the depth into the film and a and b are positive consta
Modification in the surface layer is mainly caused by F radic

because cage-like Si-O bonds are rapidly dissociated by rea
with F radicals, whereas the dissociation of network Si-O bo
requires CF2 radicals and high ion energy as well as F radicals. Th
fore, it is reasonable to assume that there is a minimum F de
required for the modification of HOSP film, Fm. Accordingly, xm,
which is the film depth corresponding to the F density of Fm, is the
deepest point in the HOSP film, where the dissociation of ca
like Si-O bonds occurs to a minimum level. This leads to the tra
formation of Eq. (1) into

Fm=a F0 exp(−bxm) (2)

or

xm=c log F0+d. (c, d: positive constants) (3)

As mentioned earlier, F0 is proportional to [F]2/[CF2] and therefore
Eq. (3) can be described as

xm=c log [F]2/[CF2]−d' (d': positive constant) (4)

Here, xm can be regarded as the thickness of a modified sur
layer in the HOSP film obtained after etching in a fluorocarbon p
ma because cage-like Si-O bonds in the HOSP film are very rap
dissociated by reaction with F radicals compared to the case of
work Si-O bonds. The y-axis variable of Fig. 1, d(Ac/An)/dX is sim-
ply proportional to the variation of cage-like Si-O bonds includ
in the HOSP film after etching because parameters An and X re-
main nearly constant independent of parameters [F] and [CF2], which
constitute the x-axis variable. That is, the reaction rate of netw
Si-O bonds with either F or CF2 radicals is much slower than tha
of cage-like Si-O bonds with F radicals, as explained in the abo
and the substrate thickness, X, is determined largely by etch 
instead of the radical concentrations.

In conclusion, the origin of a linear relation between the relat
dissociation rates of cage-like Si-O bonds to those of network S
bonds, d(Ac/An)/dX, and a parameter related to radical concent
tions in the bulk plasma, log[F]2/[CF2], has been explained, with
the aid of F depth profiling data.

The relative amounts of cage-like Si-O and network Si-O bo
remaining in the HOSP film after etching are important beca
they are closely related to the properties of the film. It is obviou

Fig. 2. Schematic diagram of cross-section of a HOSP film after
etching in a fluorocarbon plasma. x denotes the depth into
the etched HOSP film from the surface and X denotes the
thickness of a HOSP film remaining after etching.

Fig. 3. Depth profile of F concentration in a HOSP film etched in
a CHF3 plasma: the chamber pressure at 10 mTorr, a source
power at 600 Watt, and a bias voltage at −−−−100 V.
November, 2003
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desirable that the etched film maintains the same content of cage-
like Si-O bonds as was present before etching such that the initial
property of the HOSP film is preserved. The results of this study
indicate that a HOSP film etched under conditions of high [F]2/[CF2]
values is subject to the decomposition of cage-like Si-O bonds to a
greater extent than that of network Si-O bonds and, as a result, ex-
hibits a composition significantly deiviated from the initial value.
In this respect, the relative amounts of two Si-O bonds present in
the film after etching can be maintained close to those before etch-
ing by employing plasma conditions that provide low [F]2/[CF2]
values.
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