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Abstract−−−−In this paper, on-line batch process monitoring is developed on the basis of the three-way data structure
and the time-lagged window of process dynamic behavior. Two methods, DPARAFAC (dynamic parallel factor
analysis) and DTri-PLS (dynamic trilinear partial least squares), are used here depending on the process variables only
or on the process variables and quality indices, respectively. Although multivariate analysis using such PARAFAC
(parallel factor analysis) and Tri-PLS (trilinear partial least squares) models has been reported elsewhere, they are not
suited for practicing on-line batch monitoring owing to the constraints of their data structures. A simple modification
of the data structure provides a framework wherein the moving window based model can be incorporated in the existing
three-way data structure to enhance the detectability of the on-line batch monitoring. By a sequence of time window
of each batch, the proposed methodology is geared toward giving meaningful results that can be easily connected to
the current measurements without the extra computation for the estimation of unmeasured process variables. The
proposed method is supported by using two sets of benchmark fault detection problems. Comparisons with the existing
two-way and three-way multiway statistical process control methods are also included.
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INTRODUCTION

Due to the strong demand for high-value-added specialty chem-
icals, the batch chemical process has become more and more im-
portant. This is especially used for the products whose volume is
small, such as pharmaceuticals, semiconductors, polymer, biochem-
icals etc. The batch process, as the name indicates, is characterized
by prescribed processing of raw materials into products within finite
duration. Batch processes are transient in nature with their state chang-
ing with time so that operation process variables can have signifi-
cant effects on the product characteristics. These quality variables
are usually difficult to measure online; they are examined off-line
in a laboratory. However, inspecting a finished product does not
improve its quality; it only indicates the performance of the pro-
duced product. By the time when the poor quality product has been
made, it is too late to fix the process. If the off-specification prod-
uct is found far upstream of the point where inspection takes place,
the problem of the batch run can be detected and exposed. The ap-
propriate procedures can also be worked out to produce an accepted
product or an unaccepted product can be removed without waiting
for finishing this batch. Therefore, in order to operate batch pro-
cesses safely and profitably, better on-line process monitoring is
strongly required.

To ensure that the operating batches match design specifications,
regular collection and analysis of large quantities of process raw
data are required in order to check if the incoming operating con-
dition is still good enough. Since the final quality variable cannot
be easily measured on-line, several easily measurable variables, typi-
cally following a trajectory or a profile, such as temperature, pres-

sure and flow, are taken online. The profiles as the fingerprin
the batch operations provide vital information characteristics of 
operation of the batch. However, thousands of observations are
ally collected from the on-line sensor every few seconds. It is not 
sible for an operator to manually monitor all process variables. 
also very tedious to extract the status of the current process bas
the knowledge of the domain specialists. Ironically, some of the 
cess specialists may be unable to inspect the measurements the
lect. In fact, a poorly performed operation system may go unnot
for a long period of time. Therefore, a systematic and autom
scheme for monitoring processes is crucial to batch process oper

Recently, some techniques based on chemometrics have 
applied to the field of batch process monitoring. Those techniq
are used to extract the state of the system via applications of m
ematical and statistical methods from the big volume of the hist
cal database. The batch operation data are usually arranged in a
way matrix with batches, measurements and their time profiles. N
ikos and MacGregor [1994] first used multiway principal comp
nent analysis (MPCA) to analyze three-way batch data. In MPC
the three-way matrix is unfolded into a two-way matrix. Then t
huge unfolded matrix is analyzed by using standard principal c
ponent analysis (PCA) and finally the result is folded back agai
obtain a three-way model for the representation of the batch d
On the other hand, parallel factor analysis (PARAFAC) without a
unfolding processes directly decomposes the three-way matrix
factors in each of the original dimensions [Carroll and Chang, 19
Harshman, 1970]. It generally gets the simplest possible model s
the number of parameters is significantly reduced when comp
with MPCA [Dahl et al., 1999].

Several on-line batch-monitoring methods based on chemom
rics were proposed [Nomikos and MacGrego, 1995; Boqué 
Smilde, 1999]. They were built based on the predicted meas
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ments of the on-going batches to monitor the current operating con-
dition. These methods were concerned with static rather than dy-
namic relationships. They implicitly assumed that the measured var-
iable at one time instant had serial independence within each vari-
able series at past time instances. They also indicated statistical inter-
independence between different measured variable series at past
time instances. Besides, extra computation was needed to estimate
the future unmeasured data in order to fill up the predicted data from
the current point to the end of the batch. These anticipating obser-
vations might cause false detection. To alleviate these problems,
another on-line piecewise monitoring was proposed. It relied on
the proper number of the monitoring points during this batch run
[Chen and Liu, 2000; Louwerse and Smilde, 2000]. However, the
size of time intervals could not be easily determined if the charac-
teristics of the batch profile were unknown in advance. Our previ-
ous work [Chen and Liu, 2002] constructed a dynamic principal
component analysis (BDPCA) and a batch dynamic partial least
squares (BDPLS) for online batch process monitoring. Without the
future data, BDPCA and BDPLS based on the current and the pre-
vious measured data incorporated the series-correlation to enhance
the detectability of the on-line batch monitoring. However, these
approaches were focused only on the improvement of traditional
MPCA and MPLS (multiway partial least squares). With the ad-
vantage of three-way data analysis (like PARAFAC and Tri-PLS)
on good compressed data, PARAFAC and Tri-PLS will be further
extended to on-line monitoring in this study to construct better batch
monitoring methods.

There are three goals in this paper. First, it is shown how the data
structures of the PARAFAC model only focus on the relationship
among all batches without considering the relationship among the
process variables at different times. Second, to improve the conven-
tional technique of the on-line monitoring, the time window frame
of DPARAFAC and of Tri-DPLS for multivariable statistical pro-
cess control is separately developed. Third, the effectiveness of the
proposed methods in dealing with unfinished batches in on-line mon-
itoring is supported by two benchmark problems. Comparisons with
the existing MSPC methods, including MPCA, PARAFAC, MPLS
and Tri-PLS, will also be done.

PAST RELATED RESEARCH REVIEW:
PARAFAC AND Tri-PLS

The three-way experimental data structure is composed of q
ity measures, various batches and times of observations as s
in Fig. 1. A data matrix  (I×J×K) with I batches, J variables, an
K time points is defined here. In this section, a brief overview
the three-way data analysis techniques, PARAFAC and Tri-PLS
presented. For a more comprehensive reading and discussio
practical applications, extensive literature can be found [Bro, 19
Wise et al., 1999; Louwerse and Smilde, 2000].
1. PARAFAC

The PARAFAC model is the decomposition of a three-way d
 (I×J×K) in terms of the sums of the Kronecker products of th

vectors ar, br and cr [Harshman, 1970; Geladi, 1989] (Fig. 2)

(1)

where ar, br and cr are a set of independent loading vectors of t
r-th component.

With the given Gaussian noise ( ), the solution of Eq. (1) is c
sidered as the minimization of the following problem:

(2)

Note that the above equation is wrong. The norm operation ca
be applied to the three-way array. An alternative method slices
array from different directions and puts each slice side by side to f
two-way matrices. The three two-way matrices of the PARAFA
model can be represented by

(3)

where o is the Khatri-Rao product of two matrices partitioned in 
column [Rao and Mitra, 1971]. A, B and C with the column vec-
tors ar, br and cr, r=1, 2, …, R. X(1), X(2) and X(3) are unfolded ma-
trices with respect to the frontal, horizontal and lateral slices of

X

X

X  = ar br cr  + E⊗ ⊗
r = 1

R

∑

E

X  − ar br cr  ⊗ ⊗
r = 1

R

∑
ar br cr, ,

r = 1 … R, ,

limmin

X 1( )
 = A CoB( )T

 + E 1( )

X 2( )
 = B CoA( )T

 + E 2( )

X 3( )
 = C BoA( )T

 + E 3( )

Fig. 1. The representation of batch measurements in a three-way
array with I batches, J variables and K times.

Fig. 2. The PARAFAC model is decomposed into a set of triads.
Each triad contains three vectors (ar, br and cr) (top). The
combination of these vectors (ar, br and cr) forms A, B and
C loading matrices of the row, column and layer-direction
of , respectively (bottom). The core matrix I is a R×R×R
three-way identity matrix.

X
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(4)

(5)

and

(6)

where xij,k is the observation of variable j at the time point k in batch
run i. The solution of the PARAFAC model can be found by al-
ternating least squares (ALS), which successively uses the two-given
loading models, and then estimating the last loading model param-
eters [Kiers and Krijnen, 1991]. The procedure is described as fol-
lows:

Step 1: Select the number of components, R.
Step 2: Estimate A from X(1) by the least squares method,

(7)

The least squares method updates A with the given B and C,

(8)

where  and 
Step 3: Estimate B from  by the same method of Eq. (7),

(9)

with the given A and C, B can be computed by 

(10)

where  and 
Step 4: Estimate C from  by minimizing the following prob-

lem

(11)

with the given A and B, C can be solved by

(12)

where  and 
Step 5: Repeat Step 2-4 until A, B and C are converged. The three-

way matrix is decomposed into three loading matrices A(I×R), B
(J×R), and C(K×R).

The PARAFAC model takes advantage of the unique solution
[Kruskal, 1977] and eliminates the need for additional factor rota-

tion processes [Harshman and Lundy, 1984]. Like the represe
tion of the conventional PCA model, the two-way matrix repres
tation of PARAFAC is given by

(13)

where T=A is the score vector and P=CoB is the loading vector.
Based on Eqs. (10) and (12) the loading matrices B and C are par-
tially expanded:

(14)

and

(15)

Note that the elements of the first matrices of B and C, 

 and  are only the combinational relation

ships between all batches and the time, and between all batche
the variables, respectively. This implies that the serial correlati
among the batch process variables at two different times in this m
el are not considered. This will limit the PARAFAC model to th
off-line batch process monitoring.

If the PARAFAC model is applied to on-line monitoring, estimat
future data are needed in order to fill up the unmeasured data 
the current time to the end of the batch (Fig. 3), because PARAF
models require complete history of the batch data. The extra c
putational load for anticipating future observations is needed. 
sides, the estimated values may not exactly follow the actual

X 1( )
 = 

x1 1,
1  x2 1,

1 ... xJ 1,
1  x1 2,

1  x2 2,
1 ...xJ 2,

1 ...x1 K,
1  x2 K,

1 ... xJ K,
1
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2  x2 1,

2 ... xJ 1,
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X 1( )
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A  = X 1( )ZT ZZ T( ) − 1

Z  = CoB( )T Z  = zij{ }R JK×

X 2( )

X 2( )
 − B CoA( )

A B C, ,
limmin

B = X 2( )DT DDT( ) − 1

D  = CoA( )T D  = dij{ }R IK×

X 3( )

X 3( )
 − C BoA( )

A B C, ,
limmin

C  = X 3( )VT VV T( ) − 1
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 = TPT
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∑
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∑
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namic process behavior and they may lead to false detection.
2. Tri-PLS

Tri-PLS is used to predict properties of batch processes based
on those variables only indirectly related to the properties under
three-way partial least squares. This extends the traditional MPLS
to three-orders. The given experimental data are subdivided into
two blocks, a dependent block (Y) and an independent block ( ).

 block I×J×K is decomposed into a set of triads. Each triad is a
rank-one model of the array. It consists of one score vector and two
weight vectors. These two weight vectors separately represent var-
iable (wJ) and time (wK) directions. Y block organizes a two-way
array (I×M) that summarizes the final quality variables (m=1, 2,
…, M) in each batch run (Fig. 4). The goal of Tri-PLS is to deter-
mine a set of triads that is correlated with Y while describing a large
amount of the variation in  [Bro, 1996]. It can be formulated as

(16)

where . Thus, Y and  matrices are decomposed into

the summation of the product of score vectors tr and loading vec-
tors   and qr plus some residual matrices E and F:

(17)

where W=[ ]. R is the number of prin-
cipal components retained in Tri-PLS. Like PARAFAC, Tri-PL
still needs computation of the future unmeasured batch data w
on-line monitoring is applied.

ON-LINE BATCH MONITORING USING
DYNAMIC PARAFAC

The PARAFAC or Tri-PLS models previously discussed are go
for offline batch monitoring because they are concerned with 
tistic rather than dynamic relationships of the batch. A simple m
od that includes the serial correlation in the process variables m
use of the concept of the moving window. An auto-regressive m
el structure for batch i at the time point k can be represented as

[ ] (18)

where xi(k)=[xi
1,k x

i
2,k … xi

J,k]
T is the J-dimensional observation vec

tor at time point k. d is the window length of the dynamic proce
X i

d(k) can be defined as a data window at time point k. A sim
concept was also applied to the PCA model to capture the dyn
ic behavior of process variables [Ku et al., 1995; Wachs and Le
1999]. Thus, K-d data windows are obtained by cutting along 
time dimension of the data series. The three-way data array is
veloped by stacking K-d slices with the size (d+1)×J together sh
in Fig. 5. The three-way data array  is defined by (K-d)×J×(d+
The data set has the same structure as shown in Fig. 1. PARA
can be applied to analyzing this data array, .

According to the definition of X(1) in Eq. (3)  can be repre-
sented by

(19)

where

X
X

X

wJ wK,[ ] = arg  wJ( )TSwK[ ]
wJ wK,
limmax

S = yix jk
i

i = 1

I

∑
 
 
 

X

pr = br cr⊗( )

T  = X 1( )W

X  = t rpr
T

 + E  = TPT
 + E

r = 1

R

∑

Y  = t rqr
T

 + F  = TQT
 + F

r = 1

R

∑

w1
K w1

J⊗  w2
K w2

J⊗  ... wR
K wR

J⊗

Xd
i k( )  = xi k( )  xi k  − 1( ) ... xi k − d( )

X d
i

X d
i

X d

i

Xd
i( ) 1( )

 = A i CioBi( )T
 + Ei

Xd
i( ) 1( )

 = 

vecXd
i d + 1( )( )T

vecXd
i d + 2( )( )T

...

...

vecXd
i K( )( )T

Fig. 3. Anticipating the future unmeasured variables in the on-line
PARAFAC model.

Fig. 4. The representation of the Tri-PLS model, where  is de-
composed into a set of triads and the triads are significantly
correlated with Y.

X
Fig. 5. The representation of the three-way array with the time

window for the measurements of each batch.
Korean J. Chem. Eng.(Vol. 20, No. 6)
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vec is an operator that transforms a matrix into one long column
vector by staking one column of the matrix after another one. Like
the representation of PARAFAC in Eq. (10) and (12), Bi and Ci are
expanded into

(21)

(22)

where Di={dij}R×(K−d)(d+1) and Vi={v ij}R×J(K−d). Each element of the first

matrix of Bi, , implicitly contains the dynamic

relationship for variable j at different time in batch i. Also each ele-

ment of Ci,  has implicitly dynamic relation-

ships between all variables and the time windows. This means
the PARAFAC model with the moving window term is involve
with the serial correlations among the batch process variables.

If samples of I batch runs are available, the average direction
all batch runs can be estimated by pooling each batch loading

trices Bi and Ci, i.e.  and . When the op-

erating batch is measured at the time point k, a data window u
the data information up to the current time point, Xi

d(k), is pro-
jected onto the lower dimensional space of the PARAFAC mod

(23)

where ai(k)=(ti(k))T and Pavg=BavgoCavg. The residuals of the curren
measurement are,

(24)

where

(25)

To determine whether the current operating condition falls in 
accepted region, like the conventional MPSC approach, two st
tical monitoring charts for on-line monitoring are derived from tw
spaces, (i) principal component space, and (ii) residual space, b
on the residuals statistics (Q-chart) and the Hotelling statistic (T2-
chart), respectively [Jackson, 1991].

Q-chart: the sum of squared residuals of batch i can detec
type of abnormal event when the PARAFAC model defined by 
first R principal components is inadequate to describe the upset e

(26)

where Qi
k represents Q value of batch i at time point k. ei

jk is the
residual j of the batch i at time point k. The distribution of Qk value
follows a chi-square distribution [Box, 1954]. The control limit o
the Q-chart at significance level α for time interval k can be com-
puted, where α is typical 0.99 or 0.95.

T2-chart: a measure of the major variation of the sample xi(k) to
the lower dimensional space model is defined as:

(27)

where (Tik)
2 is T2 value of batch i at time point k and ΛΛΛΛ−1 represents

the estimated covariance matrix of the t-scores of all batch run
is the diagonal matrix containing the inverse of eigenvalues ass
ated with the R eigenvectors (or principal directions) retained
the model. The control limit Tα

2 can be approximated by means o
the F-distribution, Tα

2~Fr,K− d+1− r,α.
To sum up, the DPARAFAC approach is schematically giv

hereafter:

DPARAFAC Modeling Procedures:
1. Collect the historical batch data sets indicative of normal 

erations. The data should cover the range of the batch operating
terns and the conditions that yield desired product quality.

2. Pre-treat the collected data before the model is developed. A

= 

x i d + 1( )( )T x i d( )( )T ... xi 1( )( )T

x i d + 2( )( )T x i d + 1( )( )T ... xi 2( )( )T

... ...
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m= d + 1

K

∑
j = 1

J

∑ xj m,
i l j − 1( ) K − d( ) + m 2,

m= d + 1

K

∑
j = 1

J

∑

... xj m,
i l j − 1( ) K − d( ) + m F,

m= 1

K − d

∑
j = 1

J

∑

... xj m,
i l j − 1( ) K − d( ) + m F,

m= d

K − 1

∑
j = 1

J

∑
... ...

... xj m,
i l j − 1( ) K − d( ) + m F,

m= d + 1

K

∑
j = 1

J

∑

V i V i( )T( )

x j m+ n( ),
i ν m+ n( ) r,

m= 1

d + 1

∑
n = 0

K − d − 1

∑

x j m,
i l j − 1( ) K − d( ) + m 2,

m= d

K − 1

∑
j = 1

J

∑

Bavg
 = 

1
I
--- Bi

i = 1

I

∑ Cavg
 = 

1
I
--- C i

i = 1

I

∑

ai k( )  = Pavg( )TPavg[ ]
− 1

Pavg( )Tvec Xd
i k( )( )

vec Ei k( )( ) = vec Xd
i k( )( ) − Pavgai k( )

Ei k( )  = ei k( )  ei k  − 1( )  ...  ei k  − d( )[ ]

Qk
i

 = ei k( )( )T ei k( )( )  = ejk
i( )2

j = 1

J

∑

Tk
i( )2

 = t k( )( )TΛΛΛΛ − 1t k( ) K  − d + 1( ) K  − d + 1− R( )
R K  − d + 1( )2

 − 1( )
---------------------------------------------------------
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scaling each measurement variable that centers and scales the var-
iance to unit one is applied. This will avoid the important variables
of small magnitudes from being taken over by less important but
larger magnitude variables.

3. Select an appropriate number of time intervals throughout a
data window (d) of all batches in order to capture the dynamic rela-
tions among batch data and sum them to get the average time lags.

4. Construct the three-dimensional data array for each batch by
stacking the windows together, as shown in Fig. 5, and the data win-
dows may have overlap.

5. Apply PARAFAC to analyzing each batch array (Xi
d, i=1, 2,

…, I). The average loading matrices (Pavg=Bavg⊗Cavg) among all
batches are produced.

6. Compute the score for all batches at each time point to set up
the control limits Qk and Tk

2 for each time point k individually.
On-line Monitoring Procedures:
7. Record the operating data at a new sampling time of a new

batch run. Arrange the data window with previous data and the cur-
rent data [Eq. (18)].

8. Project the data window onto the previously selected two sub-
space dominant feature directions of the DPARAFAC model. Com-
pute the residuals statistics (Q) and the Hotelling statistic (T2) [Eqs.
(26) and (27)].

9. Check if the current time point is in the control limits. If either
Q or T2 is above its control limit, the operator is alerted and one
further analyzes what has caused the abnormal situation. Otherwise,
keep monitoring the next new time point and go to Step 7.

ON-LINE BATCH MONITORING
WITH Tri-DYNAMIC PLS

To extend three-way array of DPARAFAC, the dynamic tri-dy-
namic PLS (DTri-DPLS) is developed. It consists of two data ar-
rays with respect to process variables and quality variables. Pro-
cess variables ( ) are rearranged into a dynamic data matrix with
a time lagged data window for each batch. Because the quality var-
iables (Y) are only measured at the end of each batch run, not avail-
able throughout the duration of each batch run. In order to incorpo-
rate the quality variables into the dynamic data matrix of process
variables, the number of rows in the quality variables should be prop-
erly arranged to make a consistent size with that of the process var-
iable data matrix. In Fig. 6, the values of the quality variables are
duplicated at each row. The data is structured because quality at the

end of the batch run is accepted if the operating condition of 
data window (X i

d(k)) at the current time point k is normal.
The goal of DTri-PLS is to make a decomposition of the thr

way array  into a set of triads to maximize covariance withYi

for each batch. Each triad consists of one score vector (ti
r) and two

weight-direction vectors ((wr
J)i and (wr

d)i). Like the previous discus-
sion of the Tri-PLS algorithm, the algorithm for constructing t
DTri-PLS model to compute the parameters is derived as follo
Let =  and F0=Yi. For simplifying the representation, the batc
index i is removed from Eq. (28) to Eq. (34).

(28)

(29)

(30)

(31)

where wr=wr
d⊗wr

J, , Fr={( fjk)r} and

Hr={( ) r}. Repeat the above procedures until convergence. T
regression coefficient related  and Y can be computed from

(32)

where Tr=[t1 t2 … tr]. With the given tr and Hr, br and cr are easily
determined by the least-squares solution. The residual array fo
next iteration is calculated from

(33)

and

(34)

This removes the variance associated with the already calculat
th directions of br⊗cr and qr in the variance of process variable
and quality variables, respectively. The entire procedure is repe
by using Eqs. (28)-(34) for the next component r+1 until the 
scription of Y is properly obtained. For all batches, the average

cross correlation between  and Yi, , is ap-

plied here. Thus, the DTri-PLS model is given by the equation,

(35)

If the operating batch at the time point k is the data window us
the data information up to the current time point, Xi

d(k), is pro-
jected onto the lower dimensional space of the DTri-PLS mode

(36)

where wi
avg=(wi

d)avg⊗(wi
J)avg, i=1, 2, …, R. The residuals of the cur-

rent measurement is,

(37)

X

Xd

i

H 0 Xd
i

wr
J wr

d,[ ]  = arg  wr
J( )TSrwr

d[ ]
wr

J wr
K,

limmax

t r  = H rwr

qr  = 
Frt r

Frt r

-----------

ur  = Frqr

Sr  = sjk( )r{ } = uii( )r hjk
ii( )r

ii = 1

K − d

∑
 
 
 

hjk
ii

X

mr  = T r
TT r( ) − 1T r

Tur

H r  = H r − 1− t r br cr⊗ ⊗

Fr = Fr − 1 − T rmrqr
T

X d
i Sr

avg
 = 

K  − d + 1( )
J k − d( )

------------------------ Sr
i

i = 1

I

∑

Xd
i  = t r

i br
avg cr

avg
 + Ei⊗ ⊗

r = 1

R

∑

t1
i k( )  = vecXd

i k( )( )Tw1
avg

t2
i k( )  = vecXd

i k( )( )T
 − t1

i k( ) w1
avg( )T( )w2

avg

= vec Xd
i k( )( )T I  − w1

avg w1
avg( )T( )w2

avg

... ...

tR
i k( ) = vecXd

i k( )( )T I  − w1
avg w1

avg( )T( )...... I  − wR− 1
avg wR− 1

avg( )T( )wR
avg

vec Ei k( )( ) = vec Xd
i k( )( ) − Pavgai k( )

Fig. 6. Arrangement of a three-way array into I three-way dynam-
ic arrays and the corresponding quality matrices.
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where Pavg=[b1
avg⊗c1

avg … bR
avg⊗cR

avg] and ai(k)=[t1(k) … tR(k)]T.
As mentioned previously, even if the quality variable is mea-

sured at the end of the batch run, DTri-PLS still has control limits
in the process variables: the residuals statistics (Q-chart) and the
Hotelling statistic (T2-chart). The current operating condition of Q-
chart and T2-chart values of the DTri-PLS model is still only based
on the current and the previous data without the future estimated
measurements. Furthermore, DTri-PLS focuses on quality variables
and it can better determine the relationship between process vari-
ables and the quality variables (i.e., the maximum covariance between
process variables and quality variables). The modeling and moni-
toring procedures of DTri-PLS for on-line monitoring are the same
as that of DPARAFAC, except for the loading pi

avg vector in DTri-
PLS indirectly obtained from the weighted vector (wi

avg).

EXAMPLES

The proposed algorithm is applied to two benchmark data sets:
a DuPont industrial batch polymerization reactor and an exother-
mic batch reactor. Each example will be discussed in the subsec-

tions as follows.
1. Example 1: DuePont Benchmark Data

Data from an industrial batch polymerization [Nomikos and Ma
Gregor, 1995a] are used here to demonstrate the application o
proposed method. The batch reactor consists of two stages. Ap
imately two hours is needed to finish one batch run. The crit
property measurements are usually taken twelve hours or more
batch run is finished. First, the model is built upon a historical d
set of the normal operating condition batches. A total of succes
36 batches of data sets are screened and collected from 55 ba
Each successful batch run has a duration of 100 time intervals
variables are measured during the batch run, including tempera
pressures and flow rate. The data set is arranged in a three-way
X(36×10×100).

In on-line DPARFAC, the average time lagged window of 
batches is 7. The data set for each batch is arranged in 93 time
ged window matrices [Eq. (14)]. Then these matrices are built 
a three-way array and are decomposed by using PARAFAC for 
batch. It is found, via cross-validation, that three principal com
nents are needed to describe the data set. This model captures

Fig. 7. Q and T2 control charts for on-line monitoring in Example 1: (a) DPARAFAC; (b) MPCA; (c) PARAFAC; (d) BDPCA. Each
chart for the monitoring model contains 95% (dash line) and 99% (solid line) control limits. The solid line with positive signs rep-
resents the abnormal batch; the dotted points, the normal one.
November, 2003



Three-Way Data Analysis with Time Lagged Window for On-Line Batch Process Monitoring 1007

age
uture
cto-
 this
tra-
are
 the
c),
igs.
m

mal
 vari-
m
cu-
 on-
-
ry

com-
radi-
of the variation in the process data set. With these 36 batches, the
upper control limits (95% and 99%) for the Q-chart and the T2-chart
values are computed for every time point.

The effectiveness of this DPARAFAC monitoring model is tested
through abnormal and normal batchs that are not used to construct
the model. The abnormal batch is monitored for every time point
with the Q-chart and the T2-chart values. The results are shown in
Fig. 7(a). For clear illustration, data around the control limits are
zoomed in [Fig. 8(a)]. This abnormal batch immediately drifts away
from the normal operating region from the 57th time point. This
indicates a special variation occurs from the 57-th time point of the
polymerization. With the variation, the batch operating behavior in
the model projection plane exceeds the control limits (Q-chart and
T2-chart control limits). Therefore, this batch is assigned as being
“out-of-control” or “abnormal”. When the normal batch is applied,
Q-chart and T2-chart values of the monitoring point for every time
point are always under the control limits. This indicates that it is
very unlikely to have any disturbance exist during this batch run;
namely, this batch is assigned as being “under-control” or “normal”.

The anticipated future observations of the on-line MPCA meth-
od are used here. The basic idea is to fill up the empty measure-
ments of the future process variables of the operating batch from

the current time to the end with the last deviation from the aver
trajectories obtained at the current time. This assumes that the f
measurements will deviate persistently from their average traje
ries at a constant level for the future measured variables during
rest of the batch run. A similar method is also applied to the 
ditional PARAFAC model, but the score and loading matrices 
based on the three-way decomposition. The control charts of
MPCA and PARAFAC models are shown in Figs. 7(b) and 7(
respectively. Figs. 8(b) and 8(c) are the zoom-in pictures of F
7(b) and 7(c) to clearly distinguish the abnormal condition fro
the control limits. It is obvious that among DPARAFAC, MPCA
and PARAFAC have the same capability to detect the abnor
and normal conditions. This is because some of measurement
ables in this abnormal profile are significantly drifted away fro
the typical normal one around the 57th time point (Fig. 9), parti
larly measurement variables 5, 6, 9 and 10. Compared with the
line prediction of the MPCA and the PARAFAC models, DPAR
AFAC without estimating the future measurements still yields ve
good results.
2. Example 2: Batch Reactor Benchmark Data

An exothermic chemical batch reactor is used here to make a 
parison between the proposed monitoring techniques and the t

Fig. 8. Zooming in the data of Fig. 7 around the control limits: (a) DPARAFAC; (b) MPCA; (c) PARAFAC; (d) BDPCA.
Korean J. Chem. Eng.(Vol. 20, No. 6)
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Fig. 9. Trajectories of the measured variables 5, 6, 9 and 10 from a typical normal batch run (solid line) and an abnormal one (dashed line).

Fig. 10. Q and T2 control charts for on-line monitoring in Example 2: (a) MPCA; (b) PARAFAC; (c) BDPCA; (d) DPARAFAC. Each
chart of the monitoring model contains 95% (dash line) and 99% (solid line) control limits. The solid line with positive signs rep-
resents the abnormal condition; the dotted points, the normal one.
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tional ones when the quality measurements are, or are not, avail-
able. The batch reaction contains two consecutive first-order reac-
tions:

A�B�C

Two stages are run in the system. In the first (start-up) stage, the
steam in the jacket initially heats the reactor content until the desired
operating level. In the second (maintenance) stage, the cooling water
in the jacket is used to remove the exothermic heats of reaction.
Six process variables are measured in each batch run: the jacket
temperature, the temperature of the metal wall between the reactor
and the jacket, the reactor temperature, the cooling water flow rate,
the position of cooling water control valve and the output signal of
the controller that regulates the temperature in the reactor. Two qual-
ity variables, concentration of CB and CC, are measured at the end
of each batch run. The simulation condition and relevant parame-
ters are the same as that of Luyben [1990], except the initial con-
centration CA.

A total of 50 batches based on the normal operation are used as
the basis analysis. The duration of each batch is 300 minutes: 100

minutes of the start-up time and 200 minutes of the maintena
time. The sampling interval is 2 minutes. In the normal operat
condition, there are process variations, such as the initial con
tration of A and the inlet cooling water temperature. Two ad
tional batches with good quality and bad quality, respectively, 
generated for testing. In the bad quality batch, assume that the 
concentration is shifted a bit to 0.65 lbmol/ft3 instead of the normal
initial concentration, 0.60 lbmol/ft3.

Different models, depending on the process variables only (MP
PARAFAC, BDPCA and DPARFAC), and the combination of th
process variables and quality indices (MPLS, Tri-PLS, BDPLS a
DTri-PLS), are tested as follows. BDPCA and BDPLS, which a
our previous methods [Chen and Liu, 2002] are also the time w
dow-based methods without the future unmeasured batch data
they are based on a two-way matrix analysis.

(i) Models built with process variables only: Four different mod-
els, MPCA, PARAFAC, BDPCA and DPARFAC, are used here
make a comparison. The number of components selected via c
validation for MPCA, PARAFAC, BDPCA and DPARFAC are 4

Fig. 11. Q and T2 control charts for on-line monitoring in Example 2: (a) MPLS; (b) Tri-PLS; (c) BDPLS; (d) Tri-DPLS. Each chart of
the monitoring model contains 95% (dash line) and 99% (solid line) control limits. The solid line with positive signs represents the
abnormal condition; the dotted points, the normal one.
Korean J. Chem. Eng.(Vol. 20, No. 6)
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2, 4 and 4, respectively. The Q and T2 plots of the four models for
the good and bad batches are shown in Fig. 10. No matter whether
there are normal or abnormal batches, MPCA and PARAFAC have
no apparent outliers during the whole batch run [Figs. 10(a) and
10(b)]. Even if DBPCA falls inside of the confidence limits, the
monitoring points of this abnormal batch unusually increase from
the 50th time point [Fig. 10(c)]. However, there are some false de-
tections at the normal batch in BDPCA at the initial period of time.
Even if the bad batch with the shifted initial concentration is selected
for testing, DPARAFAC can significantly detect the occurrence of
a small disturbance after the initial period of time [Fig. 10(d)].

(ii) Models built with process variables and quality indices: Four
different models (MPLS, Tri-PLS, BDPLS and DTri-PLS) are used
here. The number of components selected via cross-validation for
MPLS, Tri-PLS, BDPLS and DTri-PLS is 4, 4, 5 and 4, respec-
tively. The Q and T2 plots of the four models at the bad batch and
the good batch are shown in Fig. 13. Because quality variables are
closely correlated with the process variables in the control charts of
DBPLS and DTri-PLS at the bad batch [Figs. 11(c) and 11(d)], it is
evident that the residuals of the abnormal batches have increased
remarkably and fallen outside of the 95% confidence limit after the
60th time point, but there are still some false detections at the nor-
mal batch in BDPLS at the initial period of time. For MPLS and Tri-
PLS, the monitoring points for the bad batches are not detected dur-
ing the batch run [Figs. 11(a) and 11(b)]. This indicates that BDPLS
and DTri-PLS, which are capable of capturing the dynamic rela-
tionship between the process variables and detecting the occurrence
of the small disturbance, can perform better than the traditional static
methods (MPLS and Tri-PLS). Furthermore, DTri-PLS is more com-
pact than BDPLS because the number of parameters in the three-way
mode of DTri-PLS is significantly reduced compared with BDPLS
with the two-way mode.

CONCLUSION

In this study, three-way data analysis methods are applied to on-
line batch process monitoring through folding time window frames
while considering the dynamic characteristics of a batch process in
MSPC. The proposed methods involve the serial-correlation effects
among the process measurements. They are good for on-line batch
monitoring. Based on given process variables or quality indices,
two three-way data analysis models, DPARAFAC and DTri-PLS,
are separately studied in this paper to improve the performance of
the traditional three-way methods, PARAFAC and Tri-PLS.

As the new batch evolves, the measurements for the future time
period are unknown until the end of that batch using the existing
methods (like MPCA, MPLS, PARAFAC and Tri-PLS) for on-line
monitoring. Anticipating the future observations of the rest batches
is needed. This may cause false detection because the predicted val-
ues without considering the dynamic serial relationship may distort
the data information. Therefore, the results of these methods are
less favorable when many measurements are unknown in the initial
stage of a batch run. Besides, extra computations are needed to esti-
mate the missing measurements from the current time until the end
of the batch. In this paper, the proposed methods (DPARAFAC and
DTri-PLS) for the on-line monitoring stage do not predict or fulfill
the future unmeasured data. They are based on current and previ-

ous measured data only. DPARAFAC and DTri-PLS incorpor
both series-correlation in one batch and the cross-correlation w
the batches. Compared with the existing conventional two-way 
three-way models, these proposed methods deliver better re
through two benchmark data in monitoring the normal and the
normal batches.
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