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Abstract—In this paper, on-line batch process monitoring is developed on the basis of the three-way data structure
and the time-lagged window of process dynamic behavior. Two methods, DPARAFAC (dynamic parallel factor
analysis) and DTri-PLS (dynamic trilinear partial least squares), are used here depending on the process variables only
or on the process variables and quality indices, respectively. Although multivariate analysis using such PARAFAC
(parallel factor analysis) and Tri-PLS (trilinear partial least squares) models has been reported elsewhere, they are not
suited for practicing on-line batch monitoring owing to the constraints of their data structures. A simple modification
of the data structure provides a framework wherein the moving window based model can be incorporated in the existing
three-way data structure to enhance the detectability of the on-line batch monitoring. By a sequence of time window
of each batch, the proposed methodology is geared toward giving meaningful results that can be easily connected to
the current measurements without the extra computation for the estimation of unmeasured process variables. The
proposed method is supported by using two sets of benchmark fault detection problems. Comparisons with the existing
two-way and three-way multiway statistical process control methods are also included.
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INTRODUCTION sure and flow, are taken online. The profiles as the fingerprint of
the batch operations provide vital information characteristics of the
Due to the strong demand for high-value-added specialty chemeperation of the batch. However, thousands of observations are usu-
icals, the batch chemical process has become more and more irally collected from the on-line sensor every few seconds. It is not fea-
portant. This is especially used for the products whose volume isible for an operator to manually monitor all process variables. It is
small, such as pharmaceuticals, semiconductors, polymer, biochenalso very tedious to extract the status of the current process based on
icals etc. The batch process, as the name indicates, is characterizbe knowledge of the domain specialists. Ironically, some of the pro-
by prescribed processing of raw materials into products within finitecess specialists may be unable to inspect the measurements they col-
duration. Batch processes are transient in nature with their state chariget. In fact, a poorly performed operation system may go unnoticed
ing with time so that operation process variables can have signififor a long period of time. Therefore, a systematic and automatic
cant effects on the product characteristics. These quality variablescheme for monitoring processes is crucial to batch process operation.
are usually difficult to measure onling; they are examined off-ine  Recently, some techniques based on chemometrics have been
in a laboratory. However, inspecting a finished product does nogpplied to the field of batch process monitoring. Those techniques
improve its quality; it only indicates the performance of the pro- are used to extract the state of the system via applications of math-
duced product. By the time when the poor quality product has beeematical and statistical methods from the big volume of the histori-
made, it is too late to fix the process. If the off-specification prod- cal database. The batch operation data are usually arranged in a three-
uct is found far upstream of the point where inspection takes placayay matrix with batches, measurements and their time profiles. Nom-
the problem of the batch run can be detected and exposed. The akes and MacGregor [1994] first used multiway principal compo-
propriate procedures can also be worked out to produce an acceptednt analysis (MPCA) to analyze three-way batch data. In MPCA,
product or an unaccepted product can be removed without waitinghe three-way matrix is unfolded into a two-way matrix. Then the
for finishing this batch. Therefore, in order to operate batch pro-huge unfolded matrix is analyzed by using standard principal com-
cesses safely and profitably, better on-line process monitoring iponent analysis (PCA) and finally the result is folded back again to
strongly required. obtain a three-way model for the representation of the batch data.
To ensure that the operating batches match design specification§n the other hand, parallel factor analysis (PARAFAC) without any
regular collection and analysis of large quantities of process rawinfolding processes directly decomposes the three-way matrix into
data are required in order to check if the incoming operating confactors in each of the original dimensions [Carroll and Chang, 1970;
dition is still good enough. Since the final quality variable cannot Harshman, 1970]. It generally gets the simplest possible model since
be easily measured on-line, several easily measurable variables, typiie number of parameters is significantly reduced when compared
cally following a trajectory or a profile, such as temperature, pres-with MPCA [Dahl et al., 1999].
Several on-line batch-monitoring methods based on chemomet-
To whom correspondence should be addressed. rics were proposed [Nomikos and MacGrego, 1995; Boqué and
E-mail: jason@wavenet.cycu.edu.tw Smilde, 1999]. They were built based on the predicted measure-
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ments of the on-going batches to monitor the current operating cor K c ., c
dition. These methods were concerned with static rather than dy J] -
namic relationships. They implicitty assumed that the measured var | X
iable at one time instant had serial independence within each var?
able series at past time instances. They also indicated statistical inte
independence between different measured variable series at p:
time instances. Besides, extra computation was needed to estime .
the future unmeasured data in order to fill up the predicted data fror R
the current point to the end of the batch. These anticipating obse | B
vations might cause false detection. To alleviate these problems - '* "I E
another on-line piecewise monitoring was proposed. It relied on R
the proper number of the monitoring points during this batch run
[Chen and Liu, 2000; Louwerse and Smilde, 2000]. However, the
size of time intervals could not be easily determined if the charac
teristics of the batch profile were unknown in advance. Our previ-Fig. 2. The PARAFAC model is decomposed into a set of triads.
ous work [Chen and Liu, 2002] constructed a dynamic principal Each triad contains three vectors (ab and ¢) (top). The
component analysis (BDPCA) and a batch dynamic partial least combination of these vectors (ab and ¢) forms A, B and
squares (BDPLS) for online batch process monitoring. Without the C loading matrices of the row, column and layer-direction
future data, BDPCA and BDPLS based on the current and the pre- ?g X, respectively (botiom). The core matrix I is 8 RxRxR
. . . . ree-way identity matrix.
vious measured data incorporated the series-correlation to enhance
the detectability of the on-line batch monitoring. However, these
approaches were focused only on the improvement of traditional The three-way experimental data structure is composed of qual-
MPCA and MPLS (multiway partial least squares). With the ad- ity measures, various batches and times of observations as shown
vantage of three-way data analysis (like PARAFAC and Tri-PLS) in Fig. 1.A data matrixX (IxJxK) with | batches, J variables, and
on good compressed data, PARAFAC and Tri-PLS will be furtherK time points is defined here. In this section, a brief overview of
extended to on-line monitoring in this study to construct better batchihe three-way data analysis techniques, PARAFAC and Tri-PLS, is
monitoring methods. presented. For a more comprehensive reading and discussion of
There are three goals in this paper. First, it is shown how the dataractical applications, extensive literature can be found [Bro, 1997,
structures of the PARAFAC model only focus on the relationshipWise et al., 1999; Louwerse and Smilde, 2000].
among all batches without considering the relationship among thé. PARAFAC
process variables at different times. Second, to improve the conven- The PARAFAC model is the decomposition of a three-way data
tional technique of the on-line monitoring, the time window frame X (1xJxK) in terms of the sums of the Kronecker products of three
of DPARAFAC and of Tri-DPLS for multivariable statistical pro- vectorsa,, b, andc, [Harshman, 1970; Geladi, 1989] (Fig. 2)
cess control is separately developed. Third, the effectiveness of the .
proposed methods in dealing with unfinished batches in on-line mon- X =% a Ob,Oc +E @
itoring is supported by two benchmark problems. Comparisons with o
the existing MSPC methaods, including MPCA, PARAFAC, MPLS wherea, b, andc, are a set of independent loading vectors of the
and Tri-PLS, will also be done. r-th component.
With the given Gaussian noide ( ), the solution of Eq. (1) is con-
PAST RELATED RESEARCH REVIEW: sidered as the minimization of the following problem:
PARAFAC AND Tri-PLS
minJ
K a.b.c

r=i,..,

[t

a, a,

I

@

R
X -3 alb.c
r=1

Time
Note that the above equation is wrong. The norm operation cannot
be applied to the three-way array. An alternative method slices the
1 array from different directions and puts each slice side by side to form

X two-way matrices. The three two-way matrices of the PARAFAC
— model can be represented by

Batches X® :A(COB)T +EW

X® =B(CoA)" +E?
X®=C(BoA)"+E? ©)

1 ) J where o is the Khatri-Rao product of two matrices partitioned in the
Variables column [Rao and Mitra, 19714, B andC with the column vec-

Fig. 1. The representation of batch measurements in a three-way ~ torsa, b, andg, r=1, 2,--, R.X®, X® andX® are unfolded ma-
array with | batches, J variables and K times. trices with respect to the frontal, horizontal and lateral slices of the
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three-way array, respectively,

1 10,1 1 1 1 1
Xi1 Xz17 X510 X2 Xg27 X520 Xy Xok = Xjx
2 2 2 2 2 2 2 2 2
XO =| Xp1 Xo1" X1 Xp2 X277 X527 Xk Xak " Xgk @
| | | | | | | | |
_X1,1 Xo1 Xy1 Xp2 Xo27 " Xp2 Xy Xok " Xgk | xIK
1 1 2 2 2 | | |
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10,1 1 2 2 2 | | |
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1 12 L2 2 I I
X11 Xp1 0 Xgk Xi1 Xp1 - Xg1 0 X1 X100 X5

1 1 1 2 2 2 I ]
x(3)= Xi2 Xo27 X522 Xip Xo2 7" X2 Xp2 Xo27" X2 (6)

11 12 2 2 Loy |
Xik Xok Ko Xik Xok Xa Xuw Xaw ™ Xox |, )
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tion processes [Harshman and Lundy, 1984]. Like the representa-
tion of the conventional PCA model, the two-way matrix represen-
tation of PARAFAC is given by

X¥=A(CoB)"+E™ =TP" +E® 13
whereT=A is the score vector aiCoB is the loading vector.

Based on Egs. (10) and (12) the loading matBcasdC are par-
tially expanded:

LK LK
z z X0 -p+i Z z X1 -nk+k2

i=1k=1 i=1k=1

o3}
1
M_
Mx
||M7<

1|
i
=
1|
i

1K+klz

“1)K+k,2

K

|
I]kd(l “1Ktk 1 Z z J, kd(l’l)K+k,2

M_
Mx

1 i =

=1k

1K
z z xl,kd(l’l)K+k,R

where X, is the observation of variable j at the ime point k in batch
run i. The solution of the PARAFAC model can be found by al-
ternating least squares (ALS), which successively uses the two-given

=1K=

i

xZ kd(l

M_
M =

loading models, and then estimating the last loading model param-
eters [Kiers and Krijnen, 1991]. The procedure is described as fol-

lows:
Step 1: Select the number of components, R.
Step 2: Estimaté from X® by the least squares method,

min]X® -A(CoB)] @
A,B,C

The least squares method updétesgith the giverB andC,
A=XWZz"zz"™* G)]

whereZ =(CoB)" and ={z;} r«x
Step 3: EstimatB from X® by the same method of Eq. (7),

min|X® —B(CoA)| )
A,B,C

with the giverA andC, B can be computed by
B=xX®D"(DD"* (10)

whereD =(CoA)" and ={d,} z«x
Step 4: Estimat€ from X by minimizing the following prob-
lem

min|X® -C(BoA)| (11
A,B,C

with the givenA andB, C can be solved by
C=x®VvT(vwnH™ (12)

whereV =(BoA)" andV ={V,} w1,

Step 5: Repeat Step 2-4 uAgiB andC are converged. The three-

way matrix is decomposed into three loading maté¢sR), B
(IxR), andC(KxR).

DK*kR |(DDT) (14)

1k

1]
i

(LS
Z Z )e kd(l “1DK+k R

and
Ll L [
;;XMV(. 1J+1122XJ,1V(, “D3+j.2 - lel X1V 01+ R
1=1= &5
N y o
C= |lezl 2Vi-0aia ZZX"ZV(' DI*j.2 - .;,Zl Xi.2Vi-11+.r (v

I J
2 2 XV~ leZXJKV(. DI+.2 - ZZX;KV(I DIHR

(15)

I K
Note that the elements of the first matrice8aindC, 3 > xj.

iT1k=1

I J
Q- @NA Y D X Vi-p4, a@re only the combinational relation-
i=1j=1
ships between all batches and the time, and between all batches and
the variables, respectively. This implies that the serial correlations
among the batch process variables at two different times in this mod-
el are not considered. This will limit the PARAFAC model to the
off-line batch process monitoring.

If the PARAFAC model is applied to on-line monitoring, estimated
future data are needed in order to fill up the unmeasured data from
the current time to the end of the batch (Fig. 3), because PARAFAC
models require complete history of the batch data. The extra com-

The PARAFAC model takes advantage of the unique solutionputational load for anticipating future observations is needed. Be-
[Kruskal, 1977] and eliminates the need for additional factor rota-sides, the estimated values may not exactly follow the actual dy-
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whereW=[w; Ow; wiOw; - wsOwy]. R is the number of prin-

cipal components retained in Tri-PLS. Like PARAFAC, Tri-PLS
still needs computation of the future unmeasured batch data when
on-line monitoring is applied.

ON-LINE BATCH MONITORING USING
DYNAMIC PARAFAC

Batches

/ end time

' The PARAFAC or Tri-PLS models previously discussed are good

s S Current time for offline batch monitoring because they are concerned with sta-
Variables tistic rather than dynamic relationships of the batch. A simple meth-
od that includes the serial correlation in the process variables makes
use of the concept of the moving window. An auto-regressive mod-
el structure for batch i at the time point k can be represented as,

Fig. 3. Anticipating the future unmeasured variables in the on-line
PARAFAC model.

namic process behavior and they may lead to false detection. Xa(k) =[x'(k) x'(k=1) - x'(k =d)] 18
2. Tri-PLS

Tri-PLS is used to predict properties of batch processes basefinereX(K=[x % ... %" is the J-dimensional observation vec-
on those variables only indirectly related to the properties undef©! at time point k. d is the window length of the dynamic process.
three-way partial least squares. This extends the traditional MPLZ(K) can be defined as a data window at time point k. A similar
to three-orders. The given experimental data are subdivided intgONCEPt Was also applied to the PCA model to capture the dynam-
two blocks, a dependent block)(and an independent block ( ). behavior of process varlables [Ku et aI.,' 1995; Wachs and Lewin,
X block 1xJxK is decomposed into a set of triads. Each triad is a-299]: Thus, K-d data windows are obtained by cutting along the
rank-one model of the array. It consists of one score vector and twile dimension of the data series. The three-way data array is de-
weight vectors. These two weight vectors separately represent vaY€loped by stacking K-d slices with the size (d+1)xJ together shown
iable (') and time ) directions.Y block organizes a two-way N Fig 5. The three-way data ardy s defined by (K-d)xJx(d+1).
array (IxM) that summarizes the final quality variables (m=1, 2, The data sgt has the same structure as shown in Fig. 1. PARAFAC
-, M) in each batch run (Fig. 4). The goal of Tii-PLS is to deter- €& be applied to analyzing this olajta gy,
mine a set of triads that is correlated Witwhile describing a large According to the definition ak® in Eq. (3)X; can be repre-
amount of the variation i [Bro, 1996]. It can be formulated as  S€nted by

[w’,w] =arg max{ (w’) 'Sw'] (16) (X)™ =A/(C'oB)" +E' (19)
\ 0 where
whereS = EZy.X,'kD . Thusy andX matrices are decomposed into
=1 |:|
i T
the summation of the product of score vedtosid loading vec- (vecXy(d+1))
torsp,(=b,0c,) andy, plus some residual matridsandF: 0 = (vecX(d+2))"
T=X"w )= E
R H
X :rzlt’p’T +E=TP"+E (Ve (K))"
R
Y=Y to +F=TQ"+F 17)
r=1
1 Time K ]1 1 T 1 X;
Variabl XI — g X’ d+1) \w\aﬁ’ -~
: 4 < ym —
X 5‘ ( o ‘/—-‘ lkd«X'L\ Ly
> :a X3d+2) Xd
Wa W, W,r ! £ < ’
- W + W, bt W ‘/\ H —
Y L;V Time }HI/_,; X i K\Q - *
. 3 4 -1 XGw S
7 —_—

Fig. 4. The representation of the Tri-PLS model, whereX is de-
composed into a set of triads and the triads are significantly ~ Fig. 5. The representation of the three-way array with the time
correlated with Y. window for the measurements of each batch.
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J K-1

Kd+1)" )" - (@)’ ment ofC, z ZXJmI(J vk-9+me has implicitly dynamic relation-

| K(d+2)" (x(d+1)" - (x(@)] ships between all variables and the time windows. This means that
B ‘ ‘ (20) the PARAFAC model with the moving window term is involved
‘ ‘ with the serial correlations among the batch process variables.
(K(K)" (KK =1)) - (X(K =d))" If samples of | batch runs are available, the average directions of
all batch runs can be estimated by pooling each batch loading ma-

vecis an operator that transforms a matrix into one long column; g andC', ie. Bavgz_iB. anoCavgzl'zc. When the op-
vector by staking one column of the matrix after another one. Like = e

the representation of PARAFAC in Eq. (10) and (B2ndC' are erating batch is measured at the time point k, a data window using
expanded into the data information up to the current time poyK), is pro-

jected onto the lower dimensional space of the PARAFAC model,

a+1 . i — avoy Tyavay ~ 1/ pavay T, i
Zd S Vs zdld 1 X Vi a(k). [(P .) P (P9 vedXy(k)) (23)
o m neo me wherea(K)=(t'(k))" andP™*=B*0C™". The residuals of the current
K-d-1d+1 -a-1d+1 measurement are,
B'= Z Z 2,m+mV(m+n 1 Z A 2(m+n ) Vim+n).2
o o vedE'(k)) =vedX(k)) ~P*a(k) 24)
where
K-d~-1d+1 K-d-1d*1
ZO 2, X5 (mry Vim .1 Z Z 3 mm Vim# . 2 E'(k) =[€(K) €(k—1) - €(k —d)] (25)
- ~ To determine whether the current operating condition falls in the
Cg-1dt1 accepted region, like the conventional MPSC approach, two statis-
> Z O VA tical monitoring charts for on-line monitoring are derived from two
e spaces, (i) principal component space, and (i) residual space, based
K-d-1d*1 on theresiduals statistic§Q-chart) and thelotelling statistic(T>-
' nz Z 2 VineF (DD (21) chart), respectively [Jackson, 1991].

Q-chart: the sum of squared residuals of batch i can detect the
type of abnormal event when the PARAFAC model defined by the
' first R principal components is inadequate to describe the upset event.

—d-
z z \J, (m*n) V(m*n)

A=0 m=1

. J
Q=(€(k)(€(k)) =Zl(%'k)2 (26)
_ £
i“‘x. | i Z where Q represents Q value of batch i at time poinﬂ-kk'sethe
A e g g Tm liic-orme residual j of the batch i at time point k. The distribution of&ue
L ea . follows a chi-square distribution [Box, 1954]. The control limit on
=l 22 Xialg-nw-arms Y Y Xinlg-n-orme the Q-chart at significance lewalfor time interval k can be com-
j=1m=d j=1m=d

puted, wherer is typical 0.99 or 0.95.
T?-chart: a measure of the major variation of the sar(gleto
the lower dimensional space model is defined as:

J K J K
J;mzcme mI(J 1K =d)* Z =zd+1xllvm|(1’1)(K*d)*m,2 (K —d+ l)(K —d+1 R)
) (T =(t())' A7t (k) R((K ~d +1)"-1) @7)
i“ Xl ome where (1)? is T value of batch i at time point k and" represents
{Fim=1 the estimated covariance matrix of the t-scores of all batch runs. It
ke is the diagonal matrix containing the inverse of eigenvalues associ-
. Z Z ol -1 -0 rm F (VI (VY 22) ated with the R eigenvectors (or principal directions) retained in
the model. The control limit2Tcan be approximated by means of
the F-distribution, 7~F. 41— o-
K To sum up, the DPARAFAC approach is schematically given
"'JZlm=Zd+1)<'ml(J’W’d’*” hereafter:
i i i DPARAFAC Modeling Procedures
whereD ={d;} r.-aie-y ANAV =V} - BaCh lement of the first 1. Collect the historic%l batch data sets indicative of normal op-
. K-d-1d+*1 . .
matrix of B, S 3 X, e Vinen. » implicitly contains the dynamic erations. The data ;hould cover the range of the batch operating pat-
n=0 m=1 terns and the conditions that yield desired product quality.

relationship for variable j at different time in batch i. Also each ele- 2. Pre-treat the collected data before the model is developed. Auto-
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scaling each measurement variable that centers and scales the vand of the batch run is accepted if the operating condition of the
iance to unit one is applied. This will avoid the important variables data window X ',(k)) at the current time poiktis normal.
of small magnitudes from being taken over by less important but The goal of DTri-PLS is to make a decomposition of the three-
larger magnitude variables. way arrayX, into a set of triads to maximize covariance Ywith
3. Select an appropriate number of time intervals throughout dor each batch. Each triad consists of one score vegtand two
data window (d) of all batches in order to capture the dynamic relaweight-direction vectorsv() and (°)). Like the previous discus-
tions among batch data and sum them to get the average time lagsion of the Tri-PLS algorithm, the algorithm for constructing the
4. Construct the three-dimensional data array for each batch bTri-PLS model to compute the parameters is derived as follows.
stacking the windows together, as shown in Fig. 5, and the data win-etH =X, and=,=Y". For simplifying the representation, the batch
dows may have overlap. _ index i is removed from Eq. (28) to Eq. (34).
5. Apply PARAFAC to analyzing each batch arrsy, =1, 2,

_ T

-+, 1). The average loading matricéZ {=B*0C™") among all [w:,wi] =arg rw?%?{(wf) swil 9
batches are produced.

6. Compute the score for all batches at each time point to set up t=Hw, (29)
the control limits Qand T for each time point k individually. Ft,

On-line Monitoring Procedures TRy (30)

7. Record the operating data at a new sampling time of a new
batch run. Arrange the data window with previous data and the cur- U =Fd @1

rent data [Eq. (18)]. [k C

8. Project the data window onto the previously selected two subwherew,=w/Ow;, S ={(s,).} =0 (u;).().C, F.={(f).} and
space dominant feature directions of the DPARAFAC model. Com- o= L
pute theresiduals statisticéQ) and theHotelling statistio(T?) [Egs. H.={(h,)}. Repeat the above procedures until convergence. The
(26) and (27)]. regression coefficient relatgd  andan be computed from

9. Check if the current time point is in the control limits. If either
Q or T is above its control limit, the operator is alerted and one
further analyzes what has caused the abnormal situation. OtherwisethereT,=[t, t, --- t]. With the givert, andH,, b, andc, are easily
keep monitoring the next new time point and go to Step 7. determined by the least-squares solution. The residual array for the

next iteration is calculated from

m, =(T/T)) "T/u, 32

ON-LINE BATCH MONITORING

WITH Tri-DYNAMIC PLS H,=H,,~t0b.Oc 33
and
To extend three-way array of DPARAFAC, the dynamic tri-dy- _ .
namic PLS (DTri-DPLS) is developed. It consists of two data ar- T+ =Fe2 ™ TiM:G 34)

rays with respect to process variables and quality variables. Profhjs removes the variance associated with the already calculated r-
cess variables{ ) are rearranged into a dynamic data matrix witl directions ob,J¢, andg, in the variance of process variables

a time lagged data window for each batch. Because the quality vagnd quality variables, respectively. The entire procedure is repeated
iables ) are only measured at the end of each batch run, not avaiby using Eqs. (28)-(34) for the next component r+1 until the de-
able thrOUghOUt the duration of each batch run. In order to inCOprScription ofY is propeﬂy obtained. For all batchesl the average of

rate the quality variables into the dynamic data matrix of process . e (K=d+D) L
variables, the number of rows in the quality variables should be prop®"©SS correlation betweety  anilS™ = J(k—d) le' s ap-

erly arranged to make a consistent size with that of the process vagtied here. Thus, the DTri-PLS model is given by the equation,
iable data matrix. In Fig. 6, the values of the quality variables are

duplicated at each row. The data is structured because quality at the x: = it; [0 b9 ¢ +E' (35)
r=1

" If the operating batch at the time point k is the data window using
e the data information up to the current time po¥yk), is pro-
< a jected onto the lower dimensional space of the DTri-PLS model,

Time
1

1

. ' ti(k) =(vecX(k)) w;*
y? to(k) =((vecX (k)" ~ty(k) (wi") w3
! =vedX,(k))'(I ~wi" (i) Hws

Batches

1

1 K o
Variables

| y! ti(k) =(vecXy(K)) (I =W (i) ") {1 ~WRS (W) )wi (36)
< wherew9=(W* (W), i=1, 2,---, R. The residuals of the cur-
rent measurement is,

Time

K

Fig. 6. Airangement of a three-way array into | three-way dynam-
ic arrays and the corresponding quality matrices. vedE'(k)) =vedqXy(k)) —P*%'(k) (37)
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whereP=[b*0c" -+ ba?0cYY anda (K)=[t,(k) - t:(K)]" tions as follows.

As mentioned previously, even if the quality variable is mea-1. Example 1: DuePont Benchmark Data
sured at the end of the batch run, DTri-PLS still has control limits Data from an industrial batch polymerization [Nomikos and Mac-
in the process variables: tresiduals statistic§Q-chart) and the  Gregor, 1995a] are used here to demonstrate the application of the
Hotelling statistic(T>-chart). The current operating condition of Q- proposed method. The batch reactor consists of two stages. Approx-
chart and Fchart values of the DTri-PLS model is still only based imately two hours is needed to finish one batch run. The critical
on the current and the previous data without the future estimateg@roperty measurements are usually taken twelve hours or more each
measurements. Furthermore, DTri-PLS focuses on quality variablebatch run is finished. First, the model is built upon a historical data
and it can better determine the relationship between process varset of the normal operating condition batches. A total of successful
ables and the quality variables (i.e., the maximum covariance betwee36 batches of data sets are screened and collected from 55 batches.
process variables and quality variables). The modeling and moniEach successful batch run has a duration of 100 time intervals. Ten
toring procedures of DTri-PLS for on-line monitoring are the samevariables are measured during the batch run, including temperatures,

as that of DPARAFAC, except for the loadipitf vector in DTri- pressures and flow rate. The data set is arranged in a three-way array
PLS indirectly obtained from the weighted vectai). X(36x10x100).
In on-line DPARFAC, the average time lagged window of all
EXAMPLES batches is 7. The data set for each batch is arranged in 93 time-lag-

ged window matrices [Eq. (14)]. Then these matrices are built into
The proposed algorithm is applied to two benchmark data setsa three-way array and are decomposed by using PARAFAC for each
a DuPont industrial batch polymerization reactor and an exotherbatch. It is found, via cross-validation, that three principal compo-
mic batch reactor. Each example will be discussed in the subsetents are needed to describe the data set. This model captures 74%
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Fig. 7. Q and T control charts for on-line monitoring in Example 1: (a) DPARAFAC; (b) MPCA; (c) PARAFAC; (d) BDPCA. Each
chart for the monitoring model contains 95% (dash line) and 99% (solid line) control limits. The solid line with positive sigmsp-
resents the abnormal batch; the dotted points, the normal one.
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of the variation in the process data set. With these 36 batches, thiee current time to the end with the last deviation from the average
upper control limits (95% and 99%) for the Q-chart and trenart trajectories obtained at the current time. This assumes that the future
values are computed for every time point. measurements will deviate persistently from their average trajecto-

The effectiveness of this DPARAFAC monitoring model is tested ries at a constant level for the future measured variables during this
through abnormal and normal batchs that are not used to construast of the batch run. A similar method is also applied to the tra-
the model. The abnormal batch is monitored for every time pointditional PARAFAC model, but the score and loading matrices are
with the Q-chart and the*-Ehart values. The results are shown in based on the three-way decomposition. The control charts of the
Fig. 7(a). For clear illustration, data around the control limits are MPCA and PARAFAC models are shown in Figs. 7(b) and 7(c),
zoomed in [Fig. 8(a)]. This abnormal batch immediately drifts away respectively. Figs. 8(b) and 8(c) are the zoom-in pictures of Figs.
from the normal operating region from the 57th time point. This 7(b) and 7(c) to clearly distinguish the abnormal condition from
indicates a special variation occurs from the 57-th time point of thethe control limits. It is obvious that among DPARAFAC, MPCA
polymerization. With the variation, the batch operating behavior inand PARAFAC have the same capability to detect the abnormal
the model projection plane exceeds the control limits (Q-chart andand normal conditions. This is because some of measurement vari-
T?chart control limits). Therefore, this batch is assigned as beingables in this abnormal profile are significantly drifted away from
“out-of-control” or “abnormal”. When the normal batch is applied, the typical normal one around the 57th time point (Fig. 9), particu-
Q-chart and Fchart values of the monitoring point for every time larly measurement variables 5, 6, 9 and 10. Compared with the on-
point are always under the control limits. This indicates that it isline prediction of the MPCA and the PARAFAC models, DPAR-
very unlikely to have any disturbance exist during this batch run;AFAC without estimating the future measurements still yields very
namely, this batch is assigned as being “under-control” or “normal”.good resullts.

The anticipated future observations of the on-line MPCA meth-2. Example 2: Batch Reactor Benchmark Data
od are used here. The basic idea is to fill up the empty measure- An exothermic chemical batch reactor is used here to make a com-
ments of the future process variables of the operating batch frorparison between the proposed monitoring techniques and the tradi-
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Fig. 8. Zooming in the data of Fig. 7 around the control limits: (a) DPARAFAC; (b) MPCA; (c) PARAFAC; (d) BDPCA.
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Fig. 9. Trajectories of the measured variables 5, 6, 9 and 10 from a typical normal batch run (solid line) and an abnormal oresfted line).
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Fig. 10. Q and T control charts for on-line monitoring in Example 2: (a) MPCA; (b) PARAFAC; (c) BDPCA, (d) DPARAFAC. Each
chart of the monitoring model contains 95% (dash line) and 99% (solid line) control limits. The solid line with positive sigrep-
resents the abnormal condition; the dotted points, the normal one.
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tional ones when the quality measurements are, or are not, avaininutes of the start-up time and 200 minutes of the maintenance
able. The batch reaction contains two consecutive first-order readime. The sampling interval is 2 minutes. In the normal operating
tions: condition, there are process variations, such as the initial concen-
tration of A and the inlet cooling water temperature. Two addi-
tional batches with good quality and bad quality, respectively, are
Two stages are run in the system. In the first (start-up) stage, thgenerated for testing. In the bad quality batch, assume that the initial
steam in the jacket initially heats the reactor content until the desiredoncentration is shifted a bit to 0.65 lomdlffistead of the normal
operating level. In the second (maintenance) stage, the cooling wat@itial concentration, 0.60 lomoffft
in the jacket is used to remove the exothermic heats of reaction. Different models, depending on the process variables only (MPCA,
Six process variables are measured in each batch run: the jackeARAFAC, BDPCA and DPARFAC), and the combination of the
temperature, the temperature of the metal wall between the reactprocess variables and quality indices (MPLS, Tri-PLS, BDPLS and
and the jacket, the reactor temperature, the cooling water flow ratd)Tri-PLS), are tested as follows. BDPCA and BDPLS, which are
the position of cooling water control valve and the output signal ofour previous methods [Chen and Liu, 2002] are also the time win-
the controller that regulates the temperature in the reactor. Two quatiow-based methods without the future unmeasured batch data, but
ity variables, concentration of;@nd C, are measured at the end they are based on a two-way matrix analysis.
of each batch run. The simulation condition and relevant parame-
ters are the same as that of Luyben [1990], except the initial con- (i) Models built withprocess variables onlyrour different mod-
centration G. els, MPCA, PARAFAC, BDPCA and DPARFAC, are used here to
A total of 50 batches based on the normal operation are used amake a comparison. The humber of components selected via cross-
the basis analysis. The duration of each batch is 300 minutes: 10@lidation for MPCA, PARAFAC, BDPCA and DPARFAC are 4,
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Fig. 11. Q and T control charts for on-line monitoring in Example 2: (a) MPLS; (b) Tri-PLS; (c) BDPLS; (d) Tri-DPLS. Each chart of
the monitoring model contains 95% (dash line) and 99% (solid line) control limits. The solid line with positive signs represetite
abnormal condition; the dotted points, the normal one.
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2, 4 and 4, respectively. The Q aridplbts of the four models for  ous measured data only. DPARAFAC and DTri-PLS incorporate
the good and bad batches are shown in Fig. 10. No matter whethéoth series-correlation in one batch and the cross-correlation within
there are normal or abnormal batches, MPCA and PARAFAC havehe batches. Compared with the existing conventional two-way and
no apparent outliers during the whole batch run [Figs. 10(a) andhree-way models, these proposed methods deliver better results
10(b)]. Even if DBPCA falls inside of the confidence limits, the through two benchmark data in monitoring the normal and the ab-
monitoring points of this abnormal batch unusually increase fromnormal batches.
the 50th time point [Fig. 10(c)]. However, there are some false de-
tections at the normal batch in BDPCA at the initial period of time. ACKNOWLEDGMENTS
Even if the bad batch with the shifted initial concentration is selected
for testing, DPARAFAC can significantly detect the occurrence of This work is supported by National Science Council, R.O.C.,
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