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Abstract −−−−Numerical and experimental work was conducted to develop a visualization technique for the phase
distribution in a two-phase flow field with known internal structures by electrical impedance tomography technique,
which reconstructs the resistivity distribution with the electrical responses that are determined by corresponding
excitations. The finite element method is employed to solve the electrical field induced by the currents through
electrodes placed along the boundary and a modified Newton-Raphson iterative method is used to determine the search
step minimizing the error between the calculated and the measured voltages at the electrodes. The locations and
resisitivities of the known structures are considered as prior information. To mitigate the ill-posedness of inverse
problem and to incorporate prior information, the modified Tikhonov regularization technique is employed. Also, with
an apparatus developed for impedance imaging this study attempts to reconstruct the images of the simulated bubble
distributions and the reconstructed images imply the potential possibility of the electrical impedance tomography for
the two-phase flow visualization.

Key words: Image Reconstruction, Electrical Impedance Tomography, Modified Newton-Raphson Method, Internal Struc-
ture, Prior Information, Tikhonov Regularization

INTRODUCTION

Two-phase flow can occur under normal and accidental condi-
tions in various processes such as heat exchanger, oil or natural gas
pumping system and nuclear power plant. Because the heteroge-
neous phase distribution affects the safety, control, operation and
optimization of the process, it is important to know the characteris-
tics of two-phase flow field. Various non-destructive techniques such
as laser Doppler velocimetry (LDV) and particle image velocime-
try (PIV) have been developed to visualize the two-phase flow with-
out disturbing the flow field. Recently, the electrical impedance to-
mography (EIT) technique originating from medical engineering is
employed to investigate two-phase flow phenomena, because it is
relatively inexpensive and has good time resolution [Webster, 1990;
Jones et al., 1993; Cho et al., 1999, 2001]. The data acquisition time
and the spatial resolution of state-of-art EIT system reach a few ms
and 5%, respectively [Ovacik and Jones, 1998].

In EIT technology, different current patterns are applied to the
flow field through the electrodes attached on the boundary and the
corresponding voltages are measured. Based on the current-voltage
relation, the internal resistivity distribution, that is, the phase distri-
bution, is reconstructed. The numerical algorithm used to convert
the boundary measurement data to the internal resistivity distribu-
tion consists of iteratively solving the forward problem and updating
the conductivity distribution as determined by the formulation of in-
verse problem. The forward problem of EIT calculates the bound-
ary voltages by using assumed resistivity distribution, and the inverse
problem reconstructs the impedance distribution by using bound-
ary voltage measurements.

Quite often in real situations there are known fixed internal struc-

tures and/or resistivities inside the object. These internal struct
can be, for example, an impeller drive shaft or a mixing paddle
process vessels and fuel assemblies in nuclear reactors. The
nal structures inside the object may result in difficulties in the ima
reconstruction in EIT especially in the case where the high re
tive region is near the conductive internal structure [Williams et 
1996; Heikkinen et al., 2001a]. The so-called masking effect in 
reconstructed image may be significant for the high-contrast c
There are two ways to get around these difficulties; one is to 
the internal structures as additional electrodes [Lyon and Oak
1993; Williams et al., 1996; Heikkinen et al., 2001a] and the ot
is to include the information on the internal structures (location,
sistivity) as prior information in the inverse procedure [Heikkin
et al., 2001b].

The purpose of the present work is to develop an EIT system
the cases in which the fixed internal structure and/or its resisti
are known a priori. To achieve the purpose, an additional co
straint for the known internal structure and/or its resistivity is 
corporated into the object functional to account for prior inform
tion. The inverse problem is treated as the optimization prob
and the unknown variable (resistivity) is estimated with the aid of
Newton-Raphson method in a minimum mean square error se
In order to deal with the well-known ill-posedness of the EIT inve
problem, the modified Tikhonov regularization technique is a
introduced. We carried out phantom experiments to illustrate
reconstruction performance with real measurement data, and t
vestigate the effects of priori information on the spatial resolutio

FORMULATION OF THE PROBLEMS
AND FORWARD SOLVER

When electrical currents Il(l=1, 2, …, L) are injected into the
object Ω∈ℜ2 through the electrodes el(l=1, 2, …, L) attached on



602 M. C. Kim et al.

such
od
ed
 is
ach
tant
for-
m

own
 and
 for

ich
is

-

July, 2003

the boundary ∂Ω and the resistivity distribution is known over the
Ω, the corresponding electrical potential u(x) on Ω can be deter-
mined uniquely from the partial differential equation, which can be
derived from Maxwell’s equations:

in Ω (1)

with the following boundary conditions based on the complete elec-
trode model (CEM) [Vauhkonen, 1997]:

x∈el, l=1, 2, …, L (2)

x∈el, l=1, 2, …, L (3)

x∈∂Ω \∪L
l=1el (4)

where zl is the effective contact impedance between the lth elec-
trode and the electrolyte, Ul is the potential on the lth electrode, ν
stands for the outward unit normal, and L is the number of elec-
trodes. Various forms of the boundary conditions have been proposed
for the forward model, among them we choose the CEM which takes
into account the discrete electrodes, the effects of the contact im-
pedance, and the shunting effect of the electrodes.

In addition, the following two constraints for the injected cur-
rents and the measured voltages are needed to ensure the existence
and uniqueness of the solution:

(5)

(6)

The computation of the potential u(x) on Ω and the voltages Ul on
the electrodes for the given resistivity distribution ρ(x) and bound-
ary conditions is called the forward problem. In general, the for-
ward problem cannot be solved analytically; thus we have to resort

to the numerical method. There are various numerical methods 
as the finite difference method (FDM), boundary element meth
(BEM), and finite element method (FEM). In this study, we us
the FEM to obtain numerical solution. In FEM, the object area
discretized into sufficiently small elements having a node at e
corner and it is assumed that the resistivity distribution is cons
within each element. The maximum amount of independent in
mation is L(L−1), therefore in order to avoid making the proble
overdetermined, the following relation should be satisfied.

(7)

where N is the number of elements whose resistivities are unkn
and L is the number of electrodes. In the present study, N=776
L=32 are used for the inverse problem and N=3104 and L=32
the forward problem as shown in Fig. 1.

Let M be the number of nodes in the finite element mesh, wh
is shown in Fig. 1. The potential distribution within the object 
approximated as

(8)

and the potential on the electrodes represented as

(9)

where the function φi is the two-dimensional first order basis func
tion and the bases for the measurements are n1=(1, −1, 0, Λ, 0)T,
n2=(1, 0, −1, 0, Λ, 0)T, Λ∈ℜL×1, etc. That is, the potentials Uλ

h on
the electrodes are obtained as

(10)

∇ 1
ρ
---∇u 

 
 = 0⋅

u + 
zl

ρ
---∂u

∂ν
------ = Ul

1
ρ
---∂u

ν
------dS = I lel

∫

1
ρ
---∂u

ν
------ = 0

I l  = 0,
l = 1

L

∑

Ul  = 0.
l = 1

L

∑

N
L L  − 1( )

2
-------------------≥

u uh x( ) = αiφi
i = 1

M

∑ x( )≈

Uh
 = βjnj

j = 1

L − 1

∑

U1
h

 = βl
l = 1

L − 1

∑
U2

h
 = − β1

U3
h

 = − β2

…

UL
h

 = − βL − 1

Fig. 1. FEM meshes for (a) forward solver and (b) inverse solver. Locations of the electrodes are marked with darkened elements.
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which can be written in matrix form as

Uh=Nβ. (11)

This choice for nj’s ensures that the condition (6) is fulfilled. The
following system of linear equations is obtained from the finite ele-
ment formulation

Ab=I (12)

where

and (13)

and α=(α1, α2, Λ, αM)T, β=(β1, β2, Λ, βL− 1)
T, 0∈RM×1 and =(I1− I2,

I1− I3, Λ, I1− IL)
T. The stiffness matrix A is of the form

(14)

where N∈ℜL×(L−1) is a sparse matrix having nj’s as column such
that

(15)

The elements of the other matrices in matrix A are [Vauhkonen,
1997]

i, j=1, 2, Λ, … (16)

i=1, 2, …, M, j=1, 2, …, L (17)

i, j=1, 2, …, L (18)

where |ei| is the length of the electrode i.
In this study all the computations have been carried out in two-

dimensional (2-D) case, corresponding to the cross-sections of the
domain (see Fig. 2). If the rod shown in the figure is a good con-
ductor having high conductivity, the electrical potential within the
rod will be uniform. In 2-D finite element computations this type
of a situation can be simulated by forcing the potentials of all nodes
inside the rod region into the same value. This can be accomplished
by making the following modification to the previous FEM formu-
lations.

Let W⊂Ω be the subdomain including all the known structure.
Define

α=Gγ (19)

where G∈ℜM×(M−p+1) and γ=(γ1, γ2, Λ, γM− p, γw)
T∈ℜ(M− p+1)×1. Also, p

is the number of nodes in the subdomain W⊂Ω and γw is the value
of the potential in W. The matrix G is a sparse matrix that maps

the potential value γw to the potential of the corresponding node
namely the corresponding elements of α. After substituting the for-
mula (18) into the matrix Eq. (11) we obtain

(20)

where

(21)

and

and (22)

INVERSE SOLVER BASED ON THE
NEWTON-RAPHSON METHOD

1. Newton-Raphson Method
The inverse problem of EIT maps the boundary voltages fr

experiments to resistivity image. The objective function may 
chosen to minimize the error in the least square sense,

(23)

b = 
α
β 

 
 

I  = 
0

Î 
 
 

Î

A  = 
B CN

CN( )T NTDN 
 
 

N  = n1 n2
… nL − 1, , ,( ) = 

1 1 Λ 1
− 1 0 Λ 0

0 − 1 Λ 0

0 0 Λ − 1 
 
 
 
 
 
 
 

.                       
… … ……

B i j,( )  = 

1
ρ
---∇φi∇φjdxdy + 

1
zλ
----

λ = 1

L

∑ φieλ
∫ φjdS,

Ω∫

C i j,( )  = − 
1
zj

--- φidS,
ej

∫

D i j,( ) = 

0 i j≠
ei

zj

----- i  = j




 Ã b̃ = Ĩ

Ã  = 
GTBG GTCN

CN( )TG NTDN 
 
 

b̃ = 
γ
β 

 
 

Ĩ  = 
GT0

Î 
 
 

.

Φ ρ( ) = 
1
2
--- V  − U ρ( )[ ]T V  − U ρ( )[ ]

Fig. 2. Real situation.
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where V is the vector of measured voltage and U(ρ) is the calcu-
lated boundary voltage vector that must be matched to V.

To find ρ which minimizes the above object function, its deri-
varivative is set to zero as:

(24)

where [U']ij=∂Ui/∂ρj is the Jacobian matrix. The solution of the above
Eq. (24) uses the Newton-Raphson linearization about a resistivity
vector ρ k at k-th iteration as

(25)

The term Φ'' is called the Hessian matrix, expressed as

(26)

where ⊗ is the Kronecker matrix product. Since U'' is difficult to
calculate and relatively small, the second term in the above Eq. (26)
is usually omitted. Therefore the Hessian matrix is modified as

Φ''=[U']TU'=JTJ=H. (27)

Thus, the iterative equation for updating the resistivity vector based
on the above regularized object function is expressed as

ρ k+1=ρk+H−1{JT(V−U(ρ k))} (28)

where J and H are the Jacobian and the Hessian matrix, respec-
tively.
2. Tikhonov Regularization

The Hessian matrix is known to be ill-conditioned, which then
degrades the performance of the image reconstruction algorithm.
To mitigate this problem, the objective function that should be min-
imized is regularized as:

Φ(ρ)=[V−U(ρ)]T[V−U(ρ)]+λ[R(ρ−ρ*)]T[R(ρ−ρ*)] (29)

where R is the regularization matrix, λ is the regularization param-
eter and ρ* is the assumed resistivity vector. Consequently, the iter-
ative equation to update the resistivity vector based on the above
regularized object function is derived as

ρ k+1=ρk+(JTJ+λRTR)−1{JT(U(ρ)−V)−λRTR(ρ k−ρ*)}. (30)

According to the choice of R and ρ*, one can have various regular-
izations like the first order difference (FOD) [Vauhkonen, 1997],
the Levenberg-Marquardt (LM) regularization [Hua et al., 1988;
Yorkey et al., 1987], the implicitly scaled Levenberg-Marquardt
(isLM) regularization [Cheney et al., 1991] and so on. It is known
that if the resistivity distribution can be assumed to be continuous
FOD is a good choice and LM and isLM are suitable for the in-
verse problems whose iterative solutions are bounded but fluctuat-
ing [Webster, 1990]. These three regularization methods were tested
numerically in the application of EIT to the visualization of two-
phase flow [Kim et al., 2001]. The results indicated that isLM and
FOD could reconstruct electrical resistance images very well even for
measurement data contaminated by 2% errors and show good per-
formance for high resistivity contrast system up to 1 : 1000. Hence,
this study employs isLM, where RTR is modeled as a diagonal ma-
trix whose diagonal components are those of JTJ, and ρ*=ρk.

If the resistivity distribution can be assumed to be continuous,
FOD regularization matrix R is chosen to be |Rρ|≈|∇ρ|. In this case,
the gradient of the resistivity of the e-th element can be approxi-

mated in terms of the differences between the resistivity of e-th 
ment and those of the nearest neighboring elements that shar
face. If we discretize the problem domain into triangular eleme
the e-th row of the regularization matrix is given as

Re=[Λ −1 Λ 3(e-th) Λ −1 Λ −1 Λ] (31)

A large regularization parameter forces the resistivity distribut
to be constant. If λ=0, of course, the regularization method turn
into the Newton-Raphson method.
3. Incorporating Known Information

Sometimes in real situations there are some known internal s
tures in the interior of the object. The known location and resis
ity of the structure can be taken into account as prior informa
in the cost functional as

Φ(ρ)=[V−U(ρ)]T[V−U(ρ)]

Φ(ρ)=+λ[R(ρ−ρ*)]T[R(ρ−ρ*)]+χ[L(ρ−ρ*)]T[L(ρ−ρ*)] (32)

where the sparse matrix L is constructed to pick out the elemen
corresponding to the known structure. If we know the location a
resistivities of q elements inside the object, ρ*∈ℜM×1 is constructed
such that it contains the resistivity of q elements correspondin
the known structure and zeros of (M−q) elements, and the dimen
sion of the extraction matrix is L∈ℜq×M. The j-th row of the ex-
traction matrix, Lj is constructed such that it contains zeros for (M−
1) elements and only one 1 at the j-th column if the j-th elemen
the struccture is known. In addition, χ is another weighting factor
representing the confidence on the assumed resistivity of the i
nal structure. The value of χ can be chosen to be large if the resi
tivities of the internal structures are known accurately. If we kn
the location of the internal structure but not the resistivity, the va
of χ is set to zero. Finally, the iterative equation to update the 
pedance vector based on the above object function is derived a

ρk+1=ρk+(JTJ+λdiag(JTJ)+χLTL)−1{JT(U(ρ)−V)

ρk+1=−λdiag(JTJ)(ρk−ρ*)−χLT[L(ρk−ρ*)]}. (33)

IMAGE RECONSTRUCTION BASED ON
PHANTOM EXPERIMENTS

Because of ill-posed characteristics of the EIT inverse probl
a practical test is important for evaluating the performance of
EIT system. We performed several phantom experiments and re
structed images based on the experimental data to evaluate th
formance of the proposed reconstruction algorithm and hardw
setups.
1. Experiments

A cylindrical phantom with diameter 8 cm and height 33 cm
used. Thirty-two stainless steel electrodes are mounted on the 
surface of phantom and cover approximately 76% of the circu
ference. In order to obtain two-dimensional images, the electro
are positioned at same height. The phantom was filled up with 0.1
saline solution having resistivity of 330Ωcm. One cylindrical stain-
less steel rod with diameter of 1cm is located at the center of p
tom. The location and the resistivity of stainless steel rod are
sumed to be known, a priori. The cylindrical plastic targets with
diameter of 1 cm, whose impedance is practically infinite, are pla
in the phantom to simulate vapor phase.

Φ' ρ( ) = − U'[ ]T V  − U[ ] = 0

Φ' ρk + 1( ) = Φ' ρk( ) + Φ'' ρk( ) ρk + 1
 − ρk( ) = 0.

Φ'' = U'[ ]TU' − U''[ ]T I V  − U[ ]⊗{ }.
July, 2003
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The EIT system is described schematically in Fig. 3. The cur-
rent generated by current generation circuit in the form of

(34)

where ζl=2πλ/32, is injected into the 32 electrodes simultaneously,
and the resulting voltages are measured. Total number of current
patterns used in the experiments is 31. It is known that the above
trigonometric current pattern gives best distinguishability and is the
most versatile method of data collection [Webster, 1990]. The fre-
quency of the current is 50 kHz. It is estimated that the errors in-
volved in the generation of injected currents and in the measure-
ment of boundary voltages for homogeneous medium are main-
tained less than 1%. The data acquisition time of our EIT system is
a few ms, so tens of images can be obtained within 1s. Therefore,
it is expected that bubble motion can be tracked with our EIT sys-
tem. The obtained voltage distribution and the reconstructed image
for the homogeneous saline water system are given in Fig. 4. As

shown in this figure our EIT system and image reconstruction
gorithm have reasonably good performance.

The proper initial guess is important, sometimes crucial, for 
convergence of the inverse problem. If prior information on the 
ject to be imaged is available one could attain a good converg
characteristic. Since, unlike medical EIT problems, the phase 

I l
m

 = 
cos mζl( ) l  = 1 2 … 32 m = 1 2 … 16, , , , , , ,
sin mζl( ) l  = 1 2 … 32 m = 1 2 … 15, , , , , , ,




Fig. 3. Schematic diagram of EIT system.

Fig. 4. Experimental result for homogeneous system. (a) measured
voltage distribution and (b) reconstructed image. The re-
gularization parameter is λλλλ=0.5.

Fig. 5. Reconstructed image of no target system. (a) original image, (b) reconstructed image without prior information, and (c) recon-
structed image with prior information. The regularization parameters are λλλλ=0.5 and χχχχ=2.
Korean J. Chem. Eng.(Vol. 20, No. 4)
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Fig. 6. Reconstructed image of one target system. (a) original image, (b) reconstructed image without prior information, and (c) recon-
structed image with prior information. The regularization parameters are λλλλ=0.5 and χχχχ=2.

Fig. 7. Reconstructed image of two target system. (a) original images, (b) reconstructed images without prior information, and (c) recon-
structed images with prior information. The regularization parameters are λλλλ=0.5 and χχχχ=2.
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tribution in a two-phase flow is quite arbitrary, little information is
known a priori. Hence, this study attempts to estimate a constant
resistivity value representing the two-phase flow field considered
instead of seeking a proper initial distribution. If one were to assume
a linear relation between the boundary voltage and the internal re-
sistivity, the boundary voltage is decomposed as

(35)

where ρr is an arbitrarily chosen constant resistivity. In the least square
sense, a constant ρ0 minimizing the following functional

(36)

will be a good choice as an initial distribution.
The contact impedance that is caused by the imperfect contact

between an electrode and an object is inevitable in reality. A prob-
lem with the contact impedance is that a relation between currents
at electrodes and voltages across the object is not given for arbi-
trary real situations. Hence, before applying the EIT procedure to
the real imaging problem, one needs to estimate the contact imped-
ance, which will be considered in the reconstruction algorithm.

Invoking the contact impedance, the boundary voltage should
be a function of the contact impedance as well as the interior re-
sistivity distribution, U=U(ρ, z). Assume that the contact imped-
ance remains unchanged during each experiment; one can fix the
dependency of the resistivity distribution ρ by considering a homo-
geneous medium with a single phase. Namely, before each phan-
tom experiment, in order to determine the contact impedance, one
measures boundary voltages without inserting objects simulating
bubbles. The contact impedance z that minimizes the following func-
tional

(37)

is estimated in the sense of least square along with the aid of Eq.
(2). In this, V is the homogeneous boundary voltage vector meas-
ured without dispersed phase, and ρs is the resistivity of the contin-
uous phase, in the present experiment’s saline solution. The contact
impedance estimated in homogeneous situation is used for the im-
age reconstruction of the distribution of the dispersed phase.
2. Reconstructed Images

Fig. 5 shows the effect of the prior information on the recon-
structed image for no target system, i.e., water-conductor two phase
system. For one target system, i.e., water-conductor-insulator three
phase system, Fig. 6 describes the effect of the prior information.
As shown in these figures, we can get clearer images with prior in-
formation than without. The effect of the prior information on the
quality of the reconstructed image for this case is quite favorable.
Especially, the effect of prior information is dramatically increased
as the target approaches the rod located at the center of phantom,
as shown in Fig. 7. As the target is near the rod, the predicted im-
ages without prior information become worse; however, the recon-
structed image with prior information is not significantly affected
by the relative position between the rod and the targets, as given in
the second and third cases of Fig. 7. It should be noted that the pre-
dicted resistivities of the targets or the resistivity contrasts between
two phases are not identical to each other. Nevertheless, from the

reconstructed images with prior information one can identify 
location of the bubble clearly and also estimate the size to a ce
extent.

There are several methods for choosing optimal regulariza
parameters. However, different criteria will yield results of diffe
ent optimality [Vauhkonen, 1997]. In this study, since the true d
tributions in experiments were known, the regularization param
ters were chosen to show the best reconstruction image. The
gularization parameters are set to λ=0.5 and χ=2 to treat the experi-
mental error and prior information, respectively. If χ≥2, the quality
of reconstructed images and reconstruction time is not affected bχ.

The root mean square error (RMSE) defined as

(38)

for the one target system is given in Fig. 8. As shown in this figu
the RMSE decreases exponentially for the first two iteration, a
shows nearly constant values after the third iteration. Even tho
the RMSE does not decrease after a few iterations, the qualit
reconstructed image is continuously improved, so we set the m
mum iteration number to 10.

CONCLUSIONS

Quite often in real situations, there are partially known fixed 
ternal structures and/or resistivities inside the object. We have 
posed an EIT reconstruction algorithm for the case in which a fi
internal structure and/or its resistivity are known and carried 
phantom experiments to evaluate the performance of the EIT a
rithm and to validate the EIT measurement system we have de
oped. We formulated the EIT inverse problem based on the N
ton-Raphson method and incorporated additional information
the known internal structure and/or its resistivity into the object fu
tion which should be minimized. In addition, the modified Tikh
nov regularization technique was employed to take into acco
the known internal structure. The quality of the reconstructed 

U1 ρ( )
ρ

------------- U1 ρr( )
ρr

---------------≈

Φ0 = V  − 
ρ0

ρr

-----U ρr( )
T

V  − 
ρ0

ρr

-----U ρr( )

Φz = V  − U ρs z,( )[ ]T V  − U ρs z,( )[ ]

ε = 
U  − V( )T U  − V( )

VTV
--------------------------------------

Fig. 8. Root mean squared error for the one target system (Fig.6).
Korean J. Chem. Eng.(Vol. 20, No. 4)
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ages based on the phantom experiments also says that the devel-
oped EIT system is able to generate the designed current signal and
to measure the resulting voltages within the error range that can be
coped with by the present EIT algorithm. Even there are some mis-
matches between the original images and the reconstructed images,
from the reconstructed images with prior information one can iden-
tify the location of the bubble clearly and also estimate the size to a
certain extent.
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NOMENCLATURE

A : stiffness matrix used in Eq. (12) 
B : matrix whose elements are given in Eq. (16)
b : force vector
C : matrix whose elements are given in Eq. (17)
D : matrix whose elements are given in Eq. (18)
G : mapping matrix
H : Hessian matrix
I : force vector used in Eq. (12)
I l : injected electrical current through the lth electrode [A]
J : Jacobian matrix
N : matrix whose elements are given Eq. (15)
R : regularization matrix [-]
U : calculated boundary voltage matrix [V]
u : potential [V]
Ul : potential on the lth electrode [V]
V : measured voltage matrix [V]
zl : effective contact impedance [Ωm2]

Greek Letters
α : approximated potential vector used in Eq. (8) [V]
β : vector used in calculating the potentials at the electrodes
γ : potential vector mapped by matrix G
ε : root-mean squared error
λ : regularization parameter
ν : outward unit normal vector [m]
ρ : resisitivity [Ωm]
Φ : objective function [V2]
φ : two-dimensional first order basis function [-]
χ : regularization parameter [-]
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