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Abstract—Numerical and experimental work was conducted to develop a visualization technique for the phase
distribution in a two-phase flow field with known internal structures by electrical impedance tomography technique,
which reconstructs the resistivity distribution with the electrical responses that are determined by corresponding
excitations. The finite element method is employed to solve the electrical field induced by the currents through
electrodes placed along the boundary and a modified Newton-Raphson iterative method is used to determine the search
step minimizing the error between the calculated and the measured voltages at the electrodes. The locations and
resisitivities of the known structures are considered as prior information. To mitigate the ill-posedness of inverse
problem and to incorporate prior information, the modified Tikhonov regularization technique is employed. Also, with
an apparatus developed for impedance imaging this study attempts to reconstruct the images of the simulated bubble
distributions and the reconstructed images imply the potential possibility of the electrical impedance tomography for
the two-phase flow visualization.

Key words: Image Reconstruction, Electrical Impedance Tomography, Modified Newton-Raphson Method, Internal Struc-
ture, Prior Information, Tikhonov Regularization

INTRODUCTION tures and/or resistivities inside the object. These internal structures
can be, for example, an impeller drive shaft or a mixing paddle in
Two-phase flow can occur under normal and accidental condiprocess vessels and fuel assemblies in nuclear reactors. The inter-
tions in various processes such as heat exchanger, oil or natural gaal structures inside the object may result in difficulties in the image
pumping system and nuclear power plant. Because the heterogeeconstruction in EIT especially in the case where the high resis-
neous phase distribution affects the safety, control, operation antive region is near the conductive internal structure [Williams et al.,
optimization of the process, it is important to know the characteris-1996; Heikkinen et al., 2001a]. The so-called masking effect in the
tics of two-phase flow field. Various non-destructive techniques suchreconstructed image may be significant for the high-contrast case.
as laser Doppler velocimetry (LDV) and particle image velocime- There are two ways to get around these difficulties; one is to use
try (PIV) have been developed to visualize the two-phase flow with-the internal structures as additional electrodes [Lyon and Oakley,
out disturbing the flow field. Recently, the electrical impedance to-1993; Williams et al., 1996; Heikkinen et al., 2001a] and the other
mography (EIT) technique originating from medical engineering isis to include the information on the internal structures (location, re-
employed to investigate two-phase flow phenomena, because it sistivity) as prior information in the inverse procedure [Heikkinen
relatively inexpensive and has good time resolution [Webster, 1990t al., 2001b].
Jones et al., 1993; Cho et al., 1999, 2001]. The data acquisition time The purpose of the present work is to develop an EIT system for
and the spatial resolution of state-of-art EIT system reach a few nmihe cases in which the fixed internal structure and/or its resistivity
and 5%, respectively [Ovacik and Jones, 1998]. are knowna priori. To achieve the purpose, an additional con-
In EIT technology, different current patterns are applied to thestraint for the known internal structure and/or its resistivity is in-
flow field through the electrodes attached on the boundary and theorporated into the object functional to account for prior informa-
corresponding voltages are measured. Based on the current-voltatien. The inverse problem is treated as the optimization problem
relation, the internal resistivity distribution, that is, the phase distri-and the unknown variable (resistivity) is estimated with the aid of the
bution, is reconstructed. The numerical algorithm used to converNewton-Raphson method in a minimum mean square error sense.
the boundary measurement data to the internal resistivity distribuin order to deal with the well-known ill-posedness of the EIT inverse
tion consists of iteratively solving the forward problem and updatingproblem, the modified Tikhonov regularization technique is also
the conductivity distribution as determined by the formulation of in- introduced. We carried out phantom experiments to illustrate the
verse problem. The forward problem of EIT calculates the boundreconstruction performance with real measurement data, and to in-
ary voltages by using assumed resistivity distribution, and the inverseestigate the effects of priori information on the spatial resolution.
problem reconstructs the impedance distribution by using bound-

ary voltage measurements. FORMULATION OF THE PROBLEMS

Quite often in real situations there are known fixed internal struc- AND FORWARD SOLVER
To whom correspondence should be addressed. When electrical currentg(l£1, 2,---, L) are injected into the
E-mail: mckim@cheju.ac.kr object QU0 through the electrodeglel, 2,-+, L) attached on
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Fig. 1. FEM meshes for (a) forward solver and (b) inverse solver. Locations of the electrodes are marked with darkened elements.

the boundangQ and the resistivity distribution is known over the to the numerical method. There are various numerical methods such
Q the corresponding electrical potential u(x)®@rtan be deter-  as the finite difference method (FDM), boundary element method
mined uniquely from the partial differential equation, which can be (BEM), and finite element method (FEM). In this study, we used

derived from Maxwell's equations: the FEM to obtain numerical solution. In FEM, the object area is
discretized into sufficiently small elements having a node at each
0 [%Dufo inQ @ corner and it is assumed that the resistivity distribution is constant
within each element. The maximum amount of independent infor-
with the following boundary conditions based on the complete elecimation is L(L- 1), therefore in order to avoid making the problem
trode model (CEM) [Vauhkonen, 1997]: overdetermined, the following relation should be satisfied.
+20U _ =1 2... L(L-1)
AV =U, xOe,1=1,2,---, L ¥a) N= 5 @
10U4s wOe =1 2. L &) where N is the number of elements whose resistivities are unknown
J'E‘P v ' &=L A and L is the number of electrodes. In the present study, N=776 and

L=32 are used for the inverse problem and N=3104 and L=32 for
%avu =0 x00Q\Oq 4 the forward problem as shown in Fig. 1.

Let M be the number of nodes in the finite element mesh, which
where zis the effective contact impedance betweeritthelec- is shown in Fig. 1. The potential distribution within the object is
trode and the electrolyte, I3 the potential on thi¢h electrodey approximated as
stands for the outward unit normal, and L is the number of elec-
trodes. Various forms of the boundary conditions have been proposed u=u'(x) = Z a,@(x) ®)
for the forward model, among them we choose the CEM which takes
into account the discrete electrodes, the effects of the contact imand the potential on the electrodes represented as
pedance, and the shunting effect of the electrodes.

In addition, the following two constraints for the injected cur- Z Bn ©)
rents and the measured voltages are needed to ensure the eX|stence i1
and uniqueness of the solution: where the functior is the two-dimensional first order basis func-
L tion and the bases for the measurements,afé,r1, 0, A, 0V,
Ile. =0, ©) n=(1, 0,-1, 0, A, Of, AOO", etc That is, the potentialsjlbn
the electrodes are obtained as
L
U, =0. 6 L1
Izl | ( ) UT :Izlﬁl
The computation of the potential u(x) &hand the voltages, Wn us=-8,
the electrodes for the given resistivity distributk) and bound- us=-8,
ary conditions is called the forward problem. In general, the for-
ward problem cannot be solved analytically; thus we have to resort Ul =-8,-, (10)
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which can be written in matrix form as Impeller

Ur=NB. (11) /
This choice for s ensures that the condition (6) is fulfilled. The

following system of linear equations is obtained from the finite ele-

ment formulation
Ab=I (12)
where
0,0 O
b=0%0 and |=%95 (13)
00 0io

anda=(a,, a,, A, a,), B=(8., B A, B-.)", 0OR™* andl =(I-1,,
I,=13 A, 1,—1))". The stiffness matrix A is of the form
(a) side view
a a
a=g B CN g (14)
O(CN) N'DNO

whereNOO"“ is a sparse matrix havingsnas column such ]
that
%l 1 A 1% — o —
0-1 0 A 0O
N =(n,ny-++,n ) =% 0 -1 AN O % (15)
... i O -
g ’ g
oo o0 A -10O
The elements of the other matrices in mafiare [Vauhkonen, (b) bottom view
1997] _ I
Fig. 2. Real situation.
. 1 -1 .
B(i,j) = =0Oq@O Y= , LEL 2N, 1
(i.j) jﬂp @U@dxdy A;ZALAmdS i (16)

the potential valug, to the potential of the corresponding nodes,
c(ij) --1 [ @dS, =12, M,j=1,2,, L 7) namely thg correspono!ing eIementsroAfter substituting the for-
7 mula (18) into the matrix Eq. (11) we obtain

Ho iz Ab=| (20)
D(i.j) —%@ =i i,j=1,2,, L (18) where
0%
» -2HG'BG G'CNE
where |gis the length of the electrode i. A=l T o B @D
! : . ) (CN)'G N'DNU
In this study all the computations have been carried out in two-
dimensional (2-D) case, corresponding to the cross-sections of thgnd
domain (see Fig. 2). If the rod shown in the figure is a good con-
ductor having.high conductiyity, the electrical poteqtial Within the 5=%y% and ngGTO% )
rod will be uniform. In 2-D finite element computations this type 00 Oof O

of a situation can be simulated by forcing the potentials of all nodes
inside the rod region into the same value. This can be accomplished
by making the following modification to the previous FEM formu-
lations.

Let WOQ be the subdomain including all the known structure.
Define

INVERSE SOLVER BASED ON THE
NEWTON-RAPHSON METHOD

1. Newton-Raphson Method
The inverse problem of EIT maps the boundary voltages from
a=Gy (19) experiments to resistivity image. The objective function may be

chosen to minimize the error in the least square sense,
whereGOO" ™ andy=(1, ¥, A, ¥-p» Yo' DO % Also, p q

is the number of nodes in the subdomain #/andy,, is the value

L, Ty —
of the potential in W. The matri% is a sparse matrix that maps *(p) _2[V V(T ~U(P)] @3)

Korean J. Chem. Eng.(Vol. 20, No. 4)



604 M. C. Kim et al.

whereV is the vector of measured voltage &ig) is the calcu-  mated in terms of the differences between the resistivity of e-th ele-

lated boundary voltage vector that must be matchéd to ment and those of the nearest neighboring elements that share the
To find p which minimizes the above object function, its deri- face. If we discretize the problem domain into triangular elements
varivative is set to zero as: the e-th row of the regularization matrix is given as
@(p)=-[UTTV -U] =0 (24) R=[A -1 A 3@eth) A -1 A -1 A 31)

where [U];=a/dp is the Jacobian matrix. The solution of the above A large regularization parameter forces the resistivity distribution
Eq. (24) uses the Newton-Raphson linearization about a resistivityo be constant. =0, of course, the regularization method turns

vectorp* at k-th iteration as into the Newton-Raphson method.
(oY) =@ () + " (0 (0" - %) =0. (25) 3. Incorppratmg Knovyn Informahon '
" ' ' Sometimes in real situations there are some known internal struc-
The term@ is called the Hessian matrix, expressed as tures in the interior of the object. The known location and resistiv-
@' =[UT'U -[U{I OV -U]}. (26) ity of the structure can be taken into account as prior information

. in the cost functional as
where[ is the Kronecker matrix product. Sindeis difficult to

calculate and relatively small, the second term in the above Eq. (26) ¢(p):W—U(p)]T!V—U(p)] )
is usually omitted. Therefore the Hessian matrix is modified as +AR(o- )R-+ XL (0-p)I'TL (0~ p.)] 32)

@'=[UTU'=JJ=H. (27) where the sparse mattixis constructed to pick out the elements
. . . . L corresponding to the known structure. If we know the location and
Thus, the iterative eq'uatlon fpr updatmg t'he resistivity vector baseQqgistivities of q elements inside the objedf] 1" is constructed
on the above regularized object function is expressed as such that it contains the resistivity of g elements corresponding to
P =p+HYIT(V-U(0")} (28) the known structure and zeros of{l) elements, and the dimen-
. . ) sion of the extraction matrix is(lJ*". The j-th row of the ex-
where.J andH are the Jacobian and the Hessian matrix, reSpeCiaction matrix, Lis constructed such that it contains zeros for (M
tZ'VG'Ykh larizati 1) elements and only one 1 at the j-th column if the j-th element in
T onov.Regu angﬂon . . . the struccture is known. In additignjs another weighting factor
The Hessian matrix is known to be ill-conditioned, which then o esenting the confidence on the assumed resistivity of the inter-
degrades the performance of the image reconstruction algorithmy,| st cture. The value gfcan be chosen to be large if the resis-
To mitigate this problem., the objective function that should be min-gsies of the internal structures are known accurately. If we know
imized is regularized as: the location of the internal structure but not the resistivity, the value

D(p)=[V-U()]"TV-U)]+ AR~ 0)TR(0-0)] (29) of x is set to zero. Finally, the iterative equation to update the im-

. L , L pedance vector based on the above object function is derived as
where R is the regularization matiijs the regularization param-

eter ango is the assumed resistivity vector. Consequently, the iter- 0“'=0+J"J+Adiag0"J)+xL L) {J(U(0)-V)
ative equation to update the resistivity vector based on the above - Adiag@"J)(0*- ) - xLL (0*—p.)]}- (33)
regularized object function is derived as
. IMAGE RECONSTRUCTION BASED ON
PHEPHIIARR IV~ V)-ARR (™0} (20) PHANTOM EXPERIMENTS
According to the choice of R ag} one can have various regular-
izations like the first order difference (FOD) [Vauhkonen, 1997], Because of ill-posed characteristics of the EIT inverse problem,
the Levenberg-Marquardt (LM) regularization [Hua et al., 1988; a practical test is important for evaluating the performance of the
Yorkey et al., 1987], the implicitly scaled Levenberg-Marquardt EIT system. We performed several phantom experiments and recon-
(isLM) regularization [Cheney et al., 1991] and so on. It is known structed images based on the experimental data to evaluate the per-
that if the resistivity distribution can be assumed to be continuougormance of the proposed reconstruction algorithm and hardware
FOD is a good choice and LM and isLM are suitable for the in-setups.
verse problems whose iterative solutions are bounded but fluctuat. Experiments
ing [Webster, 1990]. These three regularization methods were tested A cylindrical phantom with diameter 8 cm and height 33 cm is
numerically in the application of EIT to the visualization of two- used. Thirty-two stainless steel electrodes are mounted on the inner
phase flow [Kim et al., 2001]. The results indicated that isLM and surface of phantom and cover approximately 76% of the circum-
FOD could reconstruct electrical resistance images very well even fdierence. In order to obtain two-dimensional images, the electrodes
measurement data contaminated by 2% errors and show good peare positioned at same height. The phantom was filled up with 0.15%
formance for high resistivity contrast system up to 1 : 1000. Hencegaline solution having resistivity of 38&&m. One cylindrical stain-
this study employs isLM, whefe'R is modeled as a diagonal ma- less steel rod with diameter of 1cm is located at the center of phan-
trix whose diagonal components are thosEhfando =p*. tom. The location and the resistivity of stainless steel rod are as-
If the resistivity distribution can be assumed to be continuous,sumed to be knowr priori. The cylindrical plastic targets with
FOD regularization matriR is chosen to b&p|=|Jpg]. In this case,  diameter of 1 cm, whose impedance is practically infinite, are placed
the gradient of the resistivity of the e-th element can be approxiin the phantom to simulate vapor phase.
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Fig. 3. Schematic diagram of EIT system.

The EIT system is described schematically in Fig. 3. The cur-

rent generated by current generation circuit in the form of 400
300
jm=Heos(m) 1=1,2,-++,32,m=1,2,--,16 (39) 20
gsin(m{) 1=1,2,---,32 m=1,2,---,15 -
where=21\/32, is injected into the 32 electrodes simultaneously, 0
and the resulting voltages are measured. Total number of curret (b)
patterns used in the experiments is 31. It is known that the abovFig_ 4. Experimental result for homogeneous system. (a) measu
trigonometric current pattern gives best distinguishability and is the voltage distribution and (b) reconstructed image. The r
most versatile method of data collection [Webster, 1990]. The fre- gularization parameter is A=0.5.

guency of the current is 50 kHz. It is estimated that the errors in-

volved in the generation of injected currents and in the measure-

ment of boundary voltages for homogeneous medium are mainshown in this figure our EIT system and image reconstruction al-
tained less than 1%. The data acquisition time of our EIT system igjorithm have reasonably good performance.

a few ms, so tens of images can be obtained within 1s. Therefore, The proper initial guess is important, sometimes crucial, for the
it is expected that bubble motion can be tracked with our EIT sys-convergence of the inverse problem. If prior information on the ob-
tem. The obtained voltage distribution and the reconstructed imaggect to be imaged is available one could attain a good convergence
for the homogeneous saline water system are given in Fig. 4. Asharacteristic. Since, unlike medical EIT problems, the phase dis-

A
® &

= >

(a) (b) ()

Fig. 5. Reconstructed image of no target system. (a) original image, (b) reconstructed image without prior information, and (exon
structed image with prior information. The regularization parameters areA=0.5 andx=2.
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Fig. 6. Reconstructed image of one target system. (a) original image, (b) reconstructed image without prior information, and régon

structed image with prior information. The regularization parameters areA=0.5 andx=2.

Fig. 7. Reconstructed image of two target system. (a) original images, (b) reconstructed images without prior information, angdrécon-
structed images with prior information. The regularization parameters areA=0.5 andx=2.

(a) (b) (c)
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tribution in a two-phase flow is quite arbitrary, little information is 10"
knowna priori. Hence, this study attempts to estimate a constan
resistivity value representing the two-phase flow field considered

instead of seeking a proper initial distribution. If one were to assume | —O— Without Prior Information
a linear relation between the boundary voltage and the internal re 5 \ —x—With Prior Information
sistivity, the boundary voltage is decomposed as o

Ui(0)_Uy(p)

) (35)

wherep, is an arbitrarily chosen constant resistivity. In the least square
sense, a constagog minimizing the following functional

L >\9§E—Q—&—&—®—Q &

Root Mean Squared Err
2

.
9=V -2u(p) [[v-Lu(p) (36)
b b

will be a good choice as an initial distribution.

The contact impedance that is caused by the imperfect contas
between an electrode and an object is inevitable in reality. A prob  10° : L : ; ' : : L :
lem with the contact impedance is that a relation between current 2 4 6 8 10

. . . Number of Iteration

at electrodes and voltages across the object is not given for ark
trary real situations. Hence, before applying the EIT procedure tFig. 8. Root mean squared error for the one target system (Fig. ¢
the real imaging problem, one needs to estimate the contact impe
ance, which will be considered in the reconstruction algorithm.  reconstructed images with prior information one can identify the

Invoking the contact impedance, the boundary voltage shouldocation of the bubble clearly and also estimate the size to a certain
be a function of the contact impedance as well as the interior reextent.
sistivity distribution, U=Up, z). Assume that the contact imped-  There are several methods for choosing optimal regularization
ance remains unchanged during each experiment; one can fix thgarameters. However, different criteria will yield results of differ-
dependency of the resistivity distributiprby considering a homo-  ent optimality [Vauhkonen, 1997]. In this study, since the true dis-
geneous medium with a single phase. Namely, before each phatributions in experiments were known, the regularization parame-
tom experiment, in order to determine the contact impedance, onters were chosen to show the best reconstruction image. These re-
measures boundary voltages without inserting objects simulatingyularization parameters are setd4®.5 andy=2 to treat the experi-
bubbles. The contact impedance z that minimizes the following funcimental error and prior information, respectively3R, the quality

tional of reconstructed images and reconstruction time is not affecied by
The root mean square error (RMSE) defined as
&,2[V ~U(p, 21"V ~U(p,2)] @) i (RMSE)
— T —
is estimated in the sense of least square along with the aid of Eq. £= Y VVTVU v (38)

(2). In this,V is the homogeneous boundary voltage vector meas-
ured without dispersed phase, @ the resistivity of the contin-  for the one target system is given in Fig. 8. As shown in this figure,
uous phase, in the present experiment’s saline solution. The contattte RMSE decreases exponentially for the first two iteration, and
impedance estimated in homogeneous situation is used for the inshows nearly constant values after the third iteration. Even though
age reconstruction of the distribution of the dispersed phase. the RMSE does not decrease after a few iterations, the quality of
2. Reconstructed Images reconstructed image is continuously improved, so we set the maxi-
Fig. 5 shows the effect of the prior information on the recon- mum iteration number to 10.
structed image for no target system, i.e., water-conductor two phase
system. For one target system, i.e., water-conductor-insulator three CONCLUSIONS
phase system, Fig. 6 describes the effect of the prior information.
As shown in these figures, we can get clearer images with prior in- Quite often in real situations, there are partially known fixed in-
formation than without. The effect of the prior information on the ternal structures and/or resistivities inside the object. We have pro-
quality of the reconstructed image for this case is quite favorableposed an EIT reconstruction algorithm for the case in which a fixed
Especially, the effect of prior information is dramatically increased internal structure and/or its resistivity are known and carried out
as the target approaches the rod located at the center of phantophantom experiments to evaluate the performance of the EIT algo-
as shown in Fig. 7. As the target is near the rod, the predicted invithm and to validate the EIT measurement system we have devel-
ages without prior information become worse; however, the reconeped. We formulated the EIT inverse problem based on the New-
structed image with prior information is not significantly affected ton-Raphson method and incorporated additional information for
by the relative position between the rod and the targets, as given the known intemal structure and/or its resistivity into the object func-
the second and third cases of Fig. 7. It should be noted that the prtien which should be minimized. In addition, the modified Tikho-
dicted resistivities of the targets or the resistivity contrasts betweemov regularization technique was employed to take into account
two phases are not identical to each other. Nevertheless, from thtbe known internal structure. The quality of the reconstructed im-

Korean J. Chem. Eng.(Vol. 20, No. 4)
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ages based on the phantom experiments also says that the devel-
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