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Abstract−The model-on-demand (MoD) framework was extended to the model predictive control (MPC) to design a
multiple variable model-on-demand predictive controller (MoD-PC). This control algorithm was applied to the property
control of polymer product in a continuous styrene polymerization reactor. For this purpose, a local auto-regressive
exogenous input (ARX) model was constructed with a small portion of data located in the region of interest at every
sample time. With this model an output prediction equation was formulated to calculate the optimal control input
sequence. Jacket inlet temperature and conversion were chosen as the elements of regressor state vector in data
searching step. Simulation studies were conducted by applying the MoD-PC to MIMO control problems associated
with the continuous styrene polymerization reactor. The control performance of the MoD-PC was then compared with
that of a nonlinear MPC based on the polynomial auto-regressive moving average (ARMA) model for disturbance
rejection as well as for setpoint-tracking. As a result, the MoD-PC was found to be an effective strategy for the
production of polymers with desired properties.
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INTRODUCTION

One of the important goals of polymerization reactor operation
is the production of a polymer having desired properties for a spe-
cific application. For this reason, the property control of polymer
product in polymerization reactors has been the subject of a large
number of research works [Schork et al., 1993; Embirucu et al., 1996].
However, it still remains as a difficult task because of the complex
reaction mechanism, the dramatic increase in the viscosity of reac-
tion mixture and the highly nonlinear nature of polymerization pro-
cesses.

In most of the previous works, the use of model-based control
has been proven more effective than other control strategies. Per-
haps the most important factor to be considered in model-based con-
trol is the acquisition of an accurate model, which should not only
be able to capture the system dynamics but also be easily incorpo-
rated in the controller design and realization. The first-principles
model of a polymerization reactor contains a large number of ki-
netic parameters, which are neither readily found from the litera-
ture nor easily determined by experiments. Therefore, various types
of empirical models are suggested for the identification of poly-
merization reactors and used in the design of model-based control
as an alternative to the first-principles model.

Since linear models fail to predict the nonlinear behavior of a
polymerization reactor, it is recommended to use nonlinear models
in the control of polymer properties. Indeed, a good number of studies

on nonlinear control have been carried out in this regard. Fruzzetti
et al. [1995] employed the Hammerstein model in their NLMPC
scheme, while Maner and Doyle III [1997] used the autoregressive
plus Volterra model to identify a continuous methyl methacrylate
(MMA) polymerization reactor and implemented the model in the
NLMPC. Cho et al. [1999] applied the Takagi-Sugeno type fuzzy
model based model predictive control scheme to the control of the
nonlinear pH neutralization process. Hernandez and Arkun [1993]
considered a single-input and single-output (SISO) polynomial
ARMA model to identify a continuous stirred tank reactor (CSTR),
in which a first-order exothermic reaction occurred, and proposed
a nonlinear MPC scheme based on the identified polynomial ARMA
model. Na and Rhee [2000, 2002] designed a nonlinear MPC based
on the identified polynomial ARMA model by using the succes-
sive linearization method for the control of conversion and weight-
average molecular weight in a continuous styrene polymerization
reactor. These authors [2002] also implemented experimentally their
MPC algorithm to a continuous styrene polymerization reactor. Non-
linear models, however, present some difficulties in the identifica-
tion and optimization for the controller. The optimization problem
requires sophisticated, time-consuming methods and is numerically
very difficult [Henson, 1998].

The concept of model-on-demand (MoD) is a novel paradigm
first proposed by Cybenko [1996] in the name of the ‘just-in-time
model’. Afterward, it was further developed and modified by Sten-
man [1999a, b] and Braun et al. [1999, 2000]. However, all of the
applications have been restricted to SISO systems. The basic con-
cept of MoD is to identify a local model with the data that belong
to a small neighborhood around the current operating point rather
than to estimate a complex global model covering the entire input-
output domain. This algorithm provides a good fit by using a signif-
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icantly simpler model than that for the global approximation. Hence,
it provides the potential for the control performance rivaling those
of global methods with less complex a priori knowledge, more re-
liable numerical computation and increasing flexibility.

In this study we introduce a local autoregressive exogenous input
(ARX) model for the identification of a continuous styrene poly-
merization reactor. Then a model-on-demand predictive controller
(MoD-PC) based on the identified ARX model is designed and ap-
plied to the property control of polymer product in the above-men-
tioned reactor.

MODEL-ON-DEMAND PREDICTIVE
CONTROLLER (MoD-PC)

Model-on-demand is a data mining technology, taking advan-
tage of increasing ability of computers to collect and manipulate
large data sets. The basic principles behind the MoD philosophy
are as follows: From the database of all the observation of lagged
states, the relevant data are retrieved and they are applied to a suit-
able modeling operation whenever a model equation is needed. De-
tails about the MoD can be found in Stenman [1999a].

The objective of data searching is to define the relevant data that
are used for model parameter estimation. Among the state vari-
ables that have been stored in the database, we must constitute the
regressor space by choosing the major variables that can describe
the dynamics of the system. We then examine the regressor space
and see if the states fall within the domain of a pre-specified dis-
tance from the current operating points. If so, the states within the
domain are sorted. The state variables that correspond to the se-
lected regressor states are also retrieved from the database. Various
methods have been suggested for the definition of the distance func-
tion on which the shape and orientation of the neighborhood depend.
In practice, the weighted Euclidian norm is most commonly chosen.

The local approaches that have been studied for a long time can
also be utilized in the MoD framework easily. The main difference
of the MoD framework as compared to the traditional statistical set-
tings is that it considers the local data belonging to the neighbor-
hood of the current state instead of the entire data. One of the prac-
tical uses of MoD technique is to incorporate it with the model-based
control theory. Indeed, the MoD can be combined with the MPC
formulation by obtaining a local model via the application of the
MoD method at every sample time and minimizing the objective
function constructed on the basis of the local model. If the local mod-
el is linear, the design of MoD-PC corresponds to that of the con-
ventional linear MPC between two sample times.

CONTINUOUS STYRENE POLYMERIZATION
REACTOR

The MoD-PC algorithm will be implemented for the property
control of polymer product in a CSTR in which styrene polymeriza-
tion occurs by the free radical mechanism. In the simulation study,
the first-principles model developed for the jacketed CSTR is as-
sumed to be the plant. The model equations are given in Na and
Rhee [2000, 2002]. They consist of 11 equations describing the en-
ergy balances and the mass balances for the monomer, initiator, sol-
vent, and the first three moments of both living and dead polymer

concentrations and the equation for the total volume. The physical
properties and the kinetic parameters are also taken from the same
references. To take into account the gel effect, we use the empirical
correlation suggested by Hamer et al. [1981]. The reference condi-
tions for the simulation study are listed in Table 1.

For property control, the jacket inlet temperature Tjin and the feed
flow rate qf are taken as the manipulated variables, while the con-
version X and the weight-average molecular weight Mw are cho-
sen as the controlled variables.

In order to reduce the differences among the orders of magni-
tude, the inputs and outputs are normalized between 0 and 1 as fol-
lows:

(1)

The maximum and minimum values for individual variables are
summarized in Table 2. The upper and lower bounds on the jacket
inlet temperature are imposed as constraints, considering the heat
transfer limitations and the safety. Similarly, the upper and lower
bounds in the feed flow rate are defined as constraints to avoid the

u1= 
Tjin  − Tjin min

Tjin max − Tjin min

------------------------------- u2 = 
qf − qf min

qf max − qf min

-------------------------

y1= X y2 = 
Mw − Mw min

Mw max − Mw min

--------------------------------

Table 1. Reference conditions for the simulation study

Initial Monomer (Styrene) 400 mL
charge Solvent (Toulene) 400 mL

Initiator (AIBN) 8 g
Feed Monomer 4.34 mol/L

concentration Solvent 4.70 mol/L
Initiator 0.06 mol/L

Operating
conditions

Reactor temperature
Feed flow rate

55-85oC
1-30 mL/min

Reactor Jacket volume (Vj) 0.8 L
dimension Feed temperature (Tf) 20 oC
& Ambient temperature (Ta) 20 oC
conditions Initiator efficiency (fi) 0.5

Heat of reaction for 74,500 cal/mol
thermal conductance

Heating or cooling
water flow rate (qc)

2.5 L/min

Table 2. Scaling factors and constraints for input and output vari-
ables

Weight-average
molecular weight (Mw , y2)

Mw min

Mw max

10000
40000

Jacket inlet temperature (Tjin , u1) Tjin min

Tjin max

55 oC
85 oC

Feed flow rate (qf , u2) qf min

qf max

1 mL/min
30 mL/min

Input rate constraint of
jacket inlet temperature (∆Tjin , ∆u1)

−2~2oC

Input rate constraint of
feed flow rate (∆qf , ∆u2)

−1~1 mL/min
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negative flow rate and to set the maximum flow rate that can be
handled by the pump.

DESIGN OF MoD-PC

In this study, we designed an MoD-PC and compared the per-
formance of MoD-PC with those of an LMPC and an NLMPC de-
signed on the basis of the polynomial ARMA model [Na and Rhee,
2000, 2002]. Before explaining how to design the MoD-PC, it seems
helpful to review the design procedure of the NLMPC.

A multivariable polynomial ARMA model has the following struc-
ture

(2)

where qy and qu denote the number of outputs and inputs, respec-
tively, while ny and nu indicate the number of lags on the outputs
and inputs, respectively. The order of nonlinearities was determined
to be of second-order while both ny and nu were specified as 3. Al-
though the model parameters were easily obtained by using the lin-
ear least-square error method, model structuring was required before
this procedure. Since the number of possible regressors in the mod-
el equation is much larger than those in other models, only the sig-
nificant regressors were selected among all the possible ones by
using the stepwise model building algorithm. In fact, this is unnec-
essary in the linear model identification. Then the state-space reali-
zation method was employed to facilitate the construction of the
nonlinear controller.

If the ARMA model is directly used in the MPC design, the ob-
jective function becomes a higher order function of input variables
because of the nonlinearities of the polynomial ARMA model struc-
ture. Accordingly, it requires a large time in optimal input. Na and
Rhee [2002] employed the EKF-based NLMPC scheme to make the
optimization problem be solved by quadratic programming. Hence,
the output prediction equation for p-sampling intervals into the fu-
ture was constructed by performing forward iteration and succes-
sive linearization of the state equation.

In the MoD-PC, instead of identifying a global nonlinear model
with a great deal of effort and linearizing it with respect to the re-
gressor states at every sample time, we identify a local linear mod-
el with the data near the current state at every sample time. In other
words, we describe the system with a local linear ARX model in-
stead of the second order nonlinear polynomial ARMA model. Here,
the number of lags on the outputs and inputs is adopted as three for
both models.
1. Construction of the Regressor Space and the Data Space

Among the input and output pairs, the structural elements of re-
gressor state vector ϕ(k) are selected with the normalized input-
output pairs; i.e., three step lagged Tjin and X. From the physical
perspective those states are the most reflective of the system dynam-
ics, and the three step lagged Tjin and X are used for the reflection of

the past trajectory of the dynamics. The weighted Euclidean norm
is used as the distance function to select the relevant data from the
regressor space; i.e., d(ϕ(k), ϕ(·))= .
The weighting matrix M is assumed to be diagonal for convenience.
The values of the matrix are determined by the trial and error meth-
od by the criterion that larger values are assigned to the recent ele-
ments of the regressor state vector and similar values are assigned
to the recent elements for Tjin and X to give a similar effect on the
distance function. As for the tuning of b, it is worth noting that there
exists a trade-off between bias and variance. Several classical meth-
ods such as the False Nearest Neighborhood (FNN) method, cross-
validation and Akaike Information Criteria (AIC) are used in the
determination of the distance criterion b and the value may be a
function of time. However, the value of b was kept constant and
chosen by the trial and error method in our work. In the data retrieval
step, the data within the distance criterion b from the current state in
the regressor space are selected.

ϕ(k)=[y1(k) y1(k−1) y1(k−2) u1(k−1) u1(k−2) u1(k−3)

M=diag(2, 1.5, 1, 2.5, 1.9, 1.5) (3)
b=0.6 (case 1), 0.4 (case 2), 0.3 (case 3)

For the design of MoD-PC, the database which is composed of
the regressor states and the input-output data is generated by im-
posing the pseudo random 8-level input signals to the first-princi-
ples model and saving the responses for a period of 2000 minutes.
In this case, the sample time is 2 min and the switching probability
Ps, which represents the probability of input change at the end of
any sampling interval, is set equal to 0.05. Since the performance
of MoD-PC is largely dependent on the quality and the number of
data, it is important to make the data contain much information about
the reactor dynamics. It is desired to use more frequently changed
input signals with many levels and to save the responses during a
prolonged time for a sufficient supply of data. Fig. 1 shows the gen-
erated initial data.
2. Model Structure and Controller Design

In this study, we shall consider the ARX model [Ljung, 1999;
Yoo et al., 2002] of 3rd order for both inputs and outputs. Since the
system has 2-inputs and 2-outputs, the model equation can be ex-
pressed as

y(k)=[y1(k) y2(k)]T u(k)=[u1(k) u2(k)]T

y(k)=A(k)y(k−1)+B(k)y(k−2)+C(k)y(k−3)
y(k)=+D(k)u(k−1)+E(k)u(k−2)+F(k)u(k−3) (4)

The elements of 2×2 matrices, A(k), B(k), C(k), D(k), E(k) and
F(k), are determined by using the least square error method. For
the sake of simplicity in calculation, y1(k) and y2(k) are assumed to
be decoupled in the model equation since they are not strongly cor-
related, and hence A(k), B(k), and C(k) are used in diagonal form.
The model parameters are obtained all at once by using the pseudo
inverse that makes the parameter estimation procedure straightfor-
ward.

For an effective design of the model predictive controller, the
model equation is reconstructed to the state-space model. This is
necessary because the MIMO structure of the ARX model contains
quite a large number of terms in the prediction. Thus we have

xk+1=Akxk+Bkuk, y(k)=Ckxk

yi k( ) = yi0 + θl j,
1 i, yl k − j( ) + θl j,

2 i, ul k − j( )
j = 1

nu

∑
l = 1

qu

∑
j = 1

ny

∑
l = 1

qy

∑

+ θl j m n, , ,
3 i, yl k − j( )ym k − n( )

n = 1

j

∑
m= 1

qy

∑
j = 1

ny

∑
l = 1

qy

∑

+ θl j m n, , ,
4 i, ul k − j( )um k  − n( )

n= 1

j

∑
m= l

qu

∑
j = 1

nu

∑
l = 1

qu

∑

+ θl j m n, , ,
5 i, yl k − j( )um k − n( ) + 

…
n = 1

nu

∑
m= 1

qu

∑
j = 1

ny

∑
l = 1

qy

∑

ϕ k( ) − ϕ .( )[ ]M ϕ k( ) − ϕ .( )[ ]T
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xk=[y(k)T y(k−1)T y(k−2)T]T, uk=[u(k)T u(k−1)T u(k−2)T]T

 (5)

With this state-space model one can derive the p-step prediction
equation as follows:

= k+Sk∆Uk (6)

where ∆Uk=[∆u(k)T, …, ∆u(k+m−1)T]T denotes the rate of input
changes within the control horizon m.

We shall consider the following objective function and input-
output constraints:

(7)

subject to u(k+l)min≤u(k+l)≤u(k+l)max, 0≤l≤m−1
subject to −∆u(k+l)max≤∆u(k+l)≤∆u(k+l)max, 0≤l≤m−1
subject to y(k+l)min≤ (k+l/k)≤y(k+l)max, 1≤l≤p

in which Rk+1|k denotes the future reference vector, and Λy and Λ∆u

represent the weighting matrices for the output and the input, re-
spectively. As usual, p and m denote the prediction horizon and the
control horizon, respectively. The computed input moves are im-
plemented in the receding horizon fashion, and the optimization
procedure is repeated at the next sampling interval.

APPLICATION TO POLYMER PROPERTY CONTROL 
IN A CONTINUOUS STYRENE POLYMERIZATION 

REACTOR

Simulations are conducted for disturbance rejection as well as
for setpoint-tracking in a continuous styrene polymerization reac-

Ak = 

A k( ) B k( ) C k( )
I 0 0

0 I 0

, Bk = 

D k( ) E k( ) F k( )
0 0 0

0 0 0

, Ck = I 0 0

Yk + 1 k = 

ŷ k + 1 k⁄( )
ŷ k + 2 k⁄( )

ŷ k + p k⁄( )

 = 

CkAk

CkAk
2

CkAk
p

 xk + 

CkBk

CkAkBk + CkBk

CkAk
i Bk

i = 0
∑

 uk

p−1...

...

...

+ 

CkBk 0 0 0

CkAkBk + CkBk CkBk 0 0

O

CkAk
i Bk

i = 0
∑ CkAk

i Bk
i = 0
∑   CkAk

i Bk
i = 0
∑ CkAk

i Bk
i = 0
∑

∆Uk⋅
p−1 p−2 p−m p−m−1

...

...

...

... ... ... ...

Ỹ

Λy Yk + 1 k − Rk + 1 k[ ] 2
2

 + Λ∆u∆Uk 2
2{ }

∆Uk

limmin

ŷ

Fig. 1. Generated input/output data for the identification.

Table 3. Numerical values for the controller parameters

p m Λu Λy

NLMPC Case1 20 3 diag(5, 5) diag(20, 10)
Case2 20 3 0diag(20, 5) diag(20, 15)
Case3 20 8 00diag(10, 10) diag(30, 30)

MoD-PC Case1 20 5 diag(5, 5) diag(20, 30)
Case2 20 3 diag(5, 5) diag(30, 30)
Case3 10 3 diag(5, 5) diag(30, 20)
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Fig. 2. Regulatory performances of the MoD-PC and the NLMPC (Case 1).

Fig. 3. Regulatory performances of the MoD-PC and the NLMPC (Case 2).
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tor. The control performance of the proposed MoD-PC is compared
to that of a nonlinear MPC, which is designed on the basis of the
polynomial ARMA model. The sample time is 2 min, and the pre-
diction and control horizons are given in Table 3. The weighting
matrices used in the MoD-PC and the nonlinear MPC are deter-
mined by trial-and-error and listed in Table 3 for each of the cases
investigated. The tuning of the design variables depends on both
the type of the controller applied to the system and the condition
under which a simulation is conducted. The design variables are re-
tuned and therefore different optimal values are selected for each
case study and for each controller.
1. Disturbance Rejection Problem

The ability of disturbance rejection is corroborated by analyzing
two extreme cases: one with a fluctuation of the feed concentrations
(Case 1) and the other with a sudden change in the thermal con-
ductance UA (Case 2).

In Case 1, it is assumed that the monomer feed concentration is
increased from 4.342 to 6.513 mol/L between 200 and 400 min,
while the solvent feed concentration is decreased from 4.702 to 2.351
mol/L during the same period. Fig. 2 presents the regulatory perfor-
mances of the MoD-PC and the nonlinear MPC. Since the mono-
mer concentration is increased, both the conversion and the weight
average molecular weight are increased from their steady values.
During the presence of disturbance, the MoD-PC eliminates the ef-
fect of disturbance as satisfactorily as the nonlinear MPC does. After
the feed concentrations recover their steady values, the MoD-PC
shows a somewhat oscillatory behavior and registers a larger over-
shoot. All in all, however, the performance of the MoD-PC is quite

comparable to that of the nonlinear MPC.
For the Case 2, let us consider that the thermal conductance UA

is decreased from 16 to 2 cal/sec K because of the fouling after 300
min of reaction time. As shown in Fig. 3, the decrease in the rate of
heat transfer gives rise to an increase in the conversion and a de-
crease in the molecular weight from their respective steady values. In
order to reject the effect of the disturbance, the MoD-PC decreases
the jacket inlet temperature and raises the feed flow rate simulta-
neously. As a result, the controller drives the controlled outputs to
their respective setpoints despite the presence of a severe disturbance.
It is worth noting that the decrease in the thermal conductance has
been ultimately compensated by a decrease in the jacket inlet tem-
perature without a significant change in the feed rate.

For comparison, the simulation result obtained with the nonlin-
ear MPC is also presented in Fig. 3. The nonlinear MPC results in
a large overshoot. However, it drives the controlled outputs to their
setpoints more quickly due to aggressive control inputs during the
period of disturbance rejection. This case study clearly demonstrates
that the MoD-PC effectively rejects the severe disturbance.
2. Setpoint-Tracking Problems

In the operation of continuous polymerization reactors, it is fre-
quently required to produce polymers of different grades. Therfore,
the optimization of grade-transition processes has become an impor-
tant control target. Note that the nonlinear behavior of the polymer-
ization reactors becomes more salient during the grade-transition
period than under the steady-state operation.

As an example (Case 3), let us consider a case in which the set-
point for the conversion is increased from 0.1 to 0.15 at 300 min

Fig. 4. Setpoint-tracking performances of the MoD-PC and the NLMPC (Case 3).
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and the setpoint for the weight-average molecular weight is decreased
simultaneously from the 25,000 to 20,000. The setpoint tracking
performances are shown in Fig. 4 for both the MoD-PC and the
nonlinear MPC.

The MoD-PC produces less aggressive input variations, and this
gives rise to a somewhat sluggish response of the outputs when the
setpoints change. Though the monomer conversion shows a larger
overshoot after the setpoint is changed, the amplitude decays rap-
idly and the output converges to its new setpoint. It is clearly seen
that just before 300 min the jacket inlet temperature jumps up and
the feed flow rate drops down to raise the conversion and reduce
the weight average molecular weight. Because of the overshoot in
the output, the inputs then show the opposite variations. Overall, the
control objective is accomplished by a substantial increase in the
jacket inlet temperature and a slight increase in the feed flow rate.

Although it produces a somewhat oscillatory behavior, the MoD-
PC shows a better response for the average molecular weight than
the NLMPC and its overall performance is quite comparable to that
of the NLMPC.
3. Noise Attenuation Problems

The algorithm of the MoD-PC is based on the online adaptation
of parameters in its local model. In the control algorithm based on
the online adaptation, one should evaluate the effect of the meas-
urement noise on the performance of the parameter adaptation since
a system hypersensitive to the measurement noise may bring about
a biased estimation of parameters. For this purpose, a simulation is
conducted in the presence of the measurement noise in both of the

controlled outputs under the conditions of Case 1. White noises with
zero mean and standard deviation of 0.01 are incorporated in the
outputs. As observed in Fig. 5, excessive measurement noises cause
larger overshoots and more oscillatory behavior compared to the
result in Fig. 2. Though the performance of the MoD-PC is some-
what poorer than that of the nonlinear MPC especially after the dis-
turbance disappeared, both controllers show satisfactory disturbance
rejection performance even in the presence of the measurement noise.

CONCLUSIONS

Multivariable MoD-PC is designed to overcome the difficulties
associated with a global model identification and on-line optimiza-
tion that nonlinear MPC may have. The proposed control algo-
rithm is evaluated by applying it to the property control of polymer
product in a continuous styrene polymerization reactor. The simu-
lation results for disturbance rejection and setpoint-tracking clearly
demonstrate that the MoD-PC shows a satisfactory performance in
each case study, which is comparable to that of the nonlinear MPC
based on the ARMA model. Considering the additional merits in
regard to the optimality and flexibility, one may suggest the MoD-
PC as a potential control strategy for the production of polymers
with desired properties.
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NOMENCLATURE

ϕ(k) : regressor states vector at time k
d(x, y): distance between x and y
M : weighting matrix
y(k) : plant output at time k
Tjin : jacket inlet temperature
qf : feed flow rate
X : conversion
Mw : weight-average molecular weight
b : distance criterion
y(k) : output vector
u(k) : input vector

(k+p/k): p-step ahead output prediction at t=k
Yk+1|k : output prediction vector
Rk+1/k : reference trajectory vector
∆Uk : [∆u(k)T, L, ∆u(k=m−1)T]T

Λy : weighting matrix for output, Eq. (10)
Λ∆u : weighting matrix for input, Eq. (10)
p : prediction horizon
m : manipulation horizon
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