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Abstract−Molecular dynamics simulations have been carried out to investigate nearest-neighbor distribution
functions and closely related quantities for the system of hard-spheres. The nearest-neighbor distribution function and
the exclusion probability function were computed to examine the density dependence on the structural ‘void’ and
‘particle’ properties. Simulation results were used to access the applicabilities of various theoretical predictions based
on the scaled-particle theory, the Percus-Yevick equation, and the Carnahan-Starling approximation. For lower density
systems the three different approximations give the nearest-neighbor distribution functions which are very close to one
another and also to the resulting simulation data. Among those theoretical predictions, the Carnahan-Starling approxi-
mation gives remarkably good agreement with the simulation data even for higher density systems. Also calculated is
the nth moment of the nearest-neighbor distribution functions, in which the corresponding length scale is directly
related to the measurement of the characteristic pore-size distribution.
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INTRODUCTION

Two-phase random media, such as composite materials, amor-
phous solids and porous media [Alder, 1992; Dullien, 1992],
are of great fundamental as well as practical importance to
engineers and scientists working in many areas such as hetero-
geneous catalysis, membrane separation, effective conductivity
and diffusion of molecules in micropores. The structural or mor-
phological information can be ascertained either theoretically
or experimentally. From the theoretical point of view, it is desired
to determine the static and dynamic properties of two-phase
disordered media to obtain the optimized microstructures under
equilibrium conditions. Experimentally, it has also become pos-
sible to obtain two- and three-dimensional phase information by
using a variety of experimental techniques. An example is the
experimental microtomographic methods together with theoret-
ical approaches to study the structural and transport properties
of a porous magnetic gel [Rintoul et al., 1996].

The detailed structural functions and their closely related quan-
tities can be evaluated exactly only for a few cases including the
one-dimensional system of hard-rods. For two or more dimen-
sional cases such as the systems of hard-discs and hard-spheres,
however, complete morphological information is not known an-
alytically since an infinite set of statistical functions that charac-
terize related microstructures are required to be determined. Re-
cently, Torquato and his co-workers [Torquato et al., 1990] de-
rived an integral representation of N-point distribution functions
and applied them for model interaction systems [Torquato and
Avellaneda, 1991; Quintanilla and Torquato, 1997]. By using the

lower-order correlation functional information, they investigate
upper or lower bounds on many of the properties of such hig
dimensional systems. Reliable and unambiguous results have
come increasingly necessary to eliminate any underlying unc
ainties involved in these theoretical predictions. Consequen
computer simulations have proven to be an extremely usefu
agnostic tool for investigating such systems [Allen and Tildesl
1987; Gubbins and Quirke, 1997].

In this study computer simulations via the molecular dyna
ics method for hard-spheres systems have been carried o
access the applicabilities of various theoretical expressions
pearing in the literature, namely, the scaled-particle, Perc
Yevick and Carnahan-Starling approximations. Such informat
including the nearest-neighbor distribution function and the e
clusion probability function can be used to investigate not o
the qualitative characterization of the microstructure but also 
dynamic transport problem in the model random media. T
selected examples for dynamic properties include the appl
tion of Knudsen diffusion in fully or partially overlapping porou
media [MacElroy, 1996; Suh et al., 1999] and membrane 
separation [Aoki et al., 1996]. Many of the results obtained
this work can also be easily extended to random model p
systems, e.g., the penetrable-concentric-shell model pore [
et al., 1999], in which the solid matrix is represented as 
semblies of penetrable spheres randomly distributed in the p
phase.

NEAREST-NEIGHBOR DISTRIBUTION FUNCTIONS
AND RELATED QUANTITIES

Torquato et al. [1990] first introduced the so-called neare
neighbor distribution functions and their related quantities 
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the system of N identical hard-spheres of diameter σ according
to the N-point probability density function. They defined the two
different types of probability functions of HV(r) and HP(r), which
are referred to as the ‘void’ and ‘particle’ nearest-neighbor distri-
bution functions, respectively. HV(r) provides a measure of the
probability associated with finding the nearest particle at a di-
stance r from any arbitrary point in the system. Similarly, HP(r)
represents the probability of finding the nearest particle at a di-
stance r from an actual particle at the origin. For statistically ho-
mogeneous media, as demonstrated in their work, one can relate
the nearest-neighbor distribution functions to the radial distribu-
tion functions. Note that HV and HP are the normalized probabil-
ity functions and have dimensions of inverse length.

It follows that the ‘void’ and ‘particle’ exclusion probability
functions, EV(r) and EP(r), are defined by means of the nearest-
neighbor distribution functions, i.e., 

(1)

and

(2)

Differentiating Eqs. (1) and (2) with respect to r, we have
simple relationships between the exclusion and nearest probabili-
ties functions as

(3)

and

(4)

From the physical definition for rigid hard-sphere systems, a
spherical cavity of radius r and its volume 4πr3/3 can contain at
most one particle center if 0≤r≤σ/2. Thus, for 0≤r≤σ/2, the
exclusion probability EV(r) can be given by

(5)

and, from Eq. (3), one may also have

(6)

where ρ is the particle number density. 
Furthermore, in the case of the ‘particle’ problems, spheres

are totally impenetrable and one sphere excludes another from
occupying the same place. For the range of 0≤r≤σ, one can
state the exact relations that 

(7)

(8)

Except for one-dimensional hard-rod systems, it is not pos-
sible to evaluate the nearest-neighbor distribution function for
higher dimensions because the N-point probability density func-
tions are not exactly known. As derived in the previous work
[Torquato et al., 1990], three different approximation schemes
were considered, namely, scaled-particle, Percus-Yevick and
Carnahan-Starling approximations [Reed and Gubbins, 1973;

Hansen and McDonald, 1976].
Using the scaled-particle theory, the analytical expression

the ‘void’ and ‘particle’ quantities can be written as

(9)

(10)

where

(11)

(12)

(13)

(14)

and

(15)

is a reduced packing density that is identical to the pack
fraction of impenetrable hard-spheres.

The ‘void’ exclusion distribution EV(r) is directly related to
the probability of inserting a test particle into the system of ha
spheres. This quantity can be evaluated from radial distribu
functions between a single test particle (at infinite dilution) 
radius r− σ/2 and hard-spheres of diameter σ. If one considers
the Percus-Yevick solution for such a special binary mixture
hard-spheres, then 

(16)

(17)

Guided by computer simulation data, Carnahan and Star
devised a simple but very accurate hard-sphere equation of 
and related thermodynamic properties. The Carnahan-Star
equation of state can be recovered by adding the two Per
Yevick equations of state, i.e., the compressibility and the vi
equation of state with weights of two-third and one-third, resp
tively. By means of the Carnahan-Starling approximation, w
have

(18)

(19)

where

EV r( )= 1− HV0

r

∫ r( )dr

EP r( )= 1− HP0

r∫ r( )dr

HV r( )= − 
dEV r( )

dr
---------------

HP r( )= − 
dEP r( )

dr
---------------

EV r( )= 1− 
4πr3

3
----------ρ, if 0 r σ 2⁄≤ ≤

HV r( )= 4πr2ρ, if 0 r σ 2⁄≤ ≤

EP r( )= 1, if 0 r σ≤ ≤

HP r( )= 0, if 0 r σ≤ ≤

EV x( ) = 1− η( ) − η 8ax3 + 12bx2+ 24cx+ d( )[ ],exp
if x = r σ⁄( ) 0.5≥

EP x( ) = − η 8a x3 − 1( ) + 12b x2 − 1( ) + 24c x− 1( ){ }[ ]exp ,
if x = r σ⁄( ) 1≥

a η( )= 

1+ η + η2

1− η( )3
--------------------

b η( )= 
− 3η 1+ η( )
2 1− η( )3

--------------------------

c η( )= 
3η2

4 1− η( )3
--------------------

d η( )= 
− 11η2 + 7η − 2

2 1− η( )3
----------------------------------

η = 
π
6
---ρσ3

EV x( ) = 1− η( )
− η

1− η( )2
----------------- 8 1+ 2η( )x3− 18ηx2 + 2.5η − 1{ }exp ,

if x = r σ⁄( ) 0.5≥

EP x( ) = 
− η

1− η( )2
----------------- 8 1+ 2η( ) x3− 1( ) − 18η x2− 1( ){ }exp ,

if x = r σ⁄( ) 1≥

EV x( ) = 1− η( ) − η 8ex3 + 12fx2 + 24gx+ h( )[ ]exp ,

if x = r σ⁄( ) 0.5≥

EP x( ) = − η 8e x3 − 1( ) + 12f x2− 1( )+ 24g x− 1( ){ }[ ]exp ,

if x = r σ⁄( ) 1≥
May, 2000
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(21)

(22)

(23)

By the relationships between the exclusion and nearest pro-
babilities defined in Eqs. (3) and (4), one can straightforwardly
calculate HV(r) and HP(r) for the aforementioned approxima-
tions. Although the ‘void’ and ‘particle’ quantities are not the
same for r<σ, they are related to one another for the range
of r≥σ

(24)

and

(25)

In the limit of  η�0, it is clear that HV(r)=HP(r).

RESULTS AND DISCUSSION

As described in the previous section, the three approximations
based on different statistical thermodynamic approaches were
made to determine the nearest-neighbor distribution functions
and its related quantities. It should be noted that the introduction
of simplifying approximations in those equations is required only
because of the mathematical intractability of the formal equation
of the N-point probability density function. One of the interest-
ing questions investigated in this study is related to the applica-
bilities of such theoretical approximations. This can be directly
tested by comparing against computer simulation results, and
molecular-based simulations used in this way can provide essen-
tially exact data for precisely defined model systems.

In this regard we carried out molecular dynamics (MD) simu-
lations using the hard-sphere dynamics algorithm introduced in
the pioneering work of Alder and Wainwright [1959]. In this
method, all possible collisions were evaluated and scanned to
determine the minimum collision time. Then the particles were
moved at constant velocity during the time for the first pair to
collide. Post-collisional velocities for a colliding pair were as-
signed according to elastic collision dynamics and new collision
times were reevaluated for the particles involved in possible
collisions. This procedure is repeated as many times as is desired.
The conventional periodic boundary conditions were applied in
a cubic fundamental cell to approximate an infinite system. At
lower densities of η≤0.35, the initial configurations were gener-
ated by randomly inserting spheres to assist in the equilibration
of the system. For higher densities, the initial positions were
taken from the regular sites on a face-centered-cubic lattice. The
initial velocities of particles were assigned from the equilibrium
Maxwell-Boltzmann distribution function. The MD calculations

were performed for the system containing 500 hard-sphe
Starting configurations were aged, or equilibrated, during 15

collision steps before data were accumulated and the resu
ensemble averages for a given condition were obtained from
final 107 collision steps.

In Fig. 1 through Fig. 4, we have plotted the MD simulatio
data together with the aforementioned theoretical predictions
the ‘particle’ exclusion probability functions, EP(r), and the ‘par-
ticle’ nearest-neighbor distribution functions, HP(r), as a function
of r in units of the sphere diameter, σ. The open circles in these
figures correspond to the MD data, and the solid, dotted 

e η( )= 
1+ η
1− η( )3

-----------------

f η( ) = 
− η 3+ η( )
2 1− η( )3
-----------------------

g η( ) = 
η2

2 1− η( )3
--------------------

h η( ) = 
− 9η2 + 7η − 2

2 1− η( )3
-------------------------------

EP r( )= 
EV r( )
EV σ( )
------------- for r σ≥

HP r( )= 
HV r( )
EV σ( )
------------- for r σ≥

Fig. 1. The ‘particle’ exclusion probability function EP(r) as a
function of the reduced separation distance r/σσσσ for ηηηη=
0.2. Theoretical predictions based on the scaled-particle,
Percus-Yevick, Carnahan-Starling approximations are
represented as the solid, dotted and chain-dotted curves,
respectively. Also shown as the open circles correspond
to the MD simulation data. 

Fig. 2. The ‘particle’ nearest-neighbor distribution function HP

(r) as a function of the reduced separation distance r/σσσσ
for ηηηη=0.2. Lines and symbols are the same as in Fig. 1.
Korean J. Chem. Eng.(Vol. 17, No. 3)
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chain-dotted curves to three different theoretical predictions
based on scaled-particle, Percus-Yevick, and Carnahan-Starling
approximations, respectively. For the case of low density (η=
0.2), as displayed in Figs. 1 and 2, three approximations give
the values of EP(r) and HP(r) which are very close to one another
and also to the MD data. The good agreement with the resulting
simulation data apparently indicates the support to theoretical
predictions.

Figs. 3 and 4, respectively, depict EP(r) and HP(r) for the high
density of η=0.4. Although the general agreement is good, more
profound deviations, compared with the lower density system in
Figs. 1 and 2, are found between the approximations themselves
and between the approximations and the MD data. As can be
seen in these figures, the functions of EP(r) and HP(r) decrease
with increasing separation distance r because the probability of

finding a nearest-neighbor particle center reaches its maxim
at r=σ and diminishes monotonically for r≥σ. It should be
noted that the radial distribution function for the correspondi
hard-sphere systems, which is related to the probability of fi
ing particle at a distance between r and r+ dr, does not behave
monotonically but does exhibit oscillatory behavior even at t
moderate density regime [Hansen and McDonald, 1976].

One of the interesting features illustrated in Fig. 4 is th
theoretical results obtained from the Percus-Yevick approxim
tion can either underestimate or overestimate the values of HP(r)
depending on the separation distance r. The Percus-Yevick s
tion for the radial distribution function of hard-sphere system
is known to be more inaccurate with increasing the parti
density. For high density systems, the value at contact is 
low and the amplitude of the oscillations decreases too slo
with increasing distance [Reed and Gubbins, 1973]. The 
contact value leads to the underestimation of HP(r) near the
contact distance, while a consequence of mismatching osc
tion phase results in the overestimation of HP(r) with farther
extending the particle separation. On the contrary, as show
Fig. 4, the scaled-particle theory gives higher values of HP(r)
near the contact distance and slightly lower values for r/σ≥
1.03. Among three theoretical equations, the Carnahan-Star
approximation is shown to be the best and in excellent ag
ment with the simulation results.

In Figs. 5 and 6, respectively, we have plotted the ‘vo
exclusion probability functions, EV(r), and the ‘void’ nearest-
neighbor distribution functions, HV(r), for a few selected runs
of η=0.2, η=0.3 and η=0.4 to illustrate the manner in which
the functions of EV(r) and HV(r) change with increasing density
In evaluating those functions in the MD computations, 10×1
10 lattice points are thrown into the fundamental cubic c
with the equal time interval. For each lattice point, the small
distance from the point to the nearest particle is calculated 

Fig. 3. The ‘particle’ exclusion probability function EP(r) as a
function of the reduced separation distance r/σσσσ for ηηηη=
0.4. Lines and symbols are the same as in Fig. 1.

Fig. 4. The ‘particle’ nearest-neighbor distribution function HP

(r) as a function of the reduced separation distance r/σσσσ
for ηηηη=0.4. Lines and symbols are the same as in Fig. 1.

Fig. 5. The ‘void’ exclusion probability function EV(r) as a func-
tion of the reduced separation distance r/σσσσ for ηηηη=0.2,
ηηηη=0.3 and ηηηη=0.4. The open circles and the chaindotted
curves correspond to the MD simulation data and the
Carnahan-Starling approximation, respectively.
May, 2000
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end-
cale
the quantities of EV(r) and HV(r) are determined by binning these
distances. In the end, all counters are divided by the total sam-
pling number.

As shown in Figs. 5 and 6 for the ‘void’ properties, the theo-
retical results obtained form the Carnahan-Starling approximation
are again seen to be in remarkably good agreement with the MD
simulation data. The quantity EV(r) has the interpretation of the
volume fraction of space occupied by a system of possibly over-
lapping spheres of radius r centered at each of the actual sphere
centers. Similarly, HV(r), which is identical to the one defined in
the scaled-particle theory, can be interpreted as being the inter-
facial area per unit volume of a system of possibly overlapping
spheres of radius r centered at each of the actual sphere centers.
The quality of our MD sampling employed here was confirmed
by the fact that the resulting simulation values for EV(r) at r=σ/2
were very close to the expected value of EV (σ/2)=1− η. When
r≥σ/2, a spherical cavity centered in the void region, i.e., the
region exterior to the spheres, and the measurement HV(r)/(1−η)
in this range is related to the pore-size distribution function. The
pore-size distribution deduced from HV(r) in Fig. 6 indicates much
narrower distributions for the higher density system (η=0.4) than
those for the lower one (η=0.2), as one may expect.

Finally, we have calculated the nth moment of HV(r) and
HP(r), which can be defined as

(26)

(27)

or, using the integration by parts,

(28)

(29)

In Table 1 the MD simulation results for lV
(n)

and lP
(n)

up to the
third moment are presented to investigate the density dep
encies on the pore geometries. The corresponding length s

lV

n( )
= rn

0

∞
∫ HV r( )dr

lP

n( )
= rn

0

∞
∫ HP r( )dr

lV

n( )
= n rn 1–

0

∞
∫ EV r( )dr

lP

n( )
= n rn 1–

0

∞
∫ EP r( )dr 

= σn+ n rn 1–

σ

∞
∫ EP r( )dr

Fig. 6. The ‘void’ nearest-neighbor distribution function HV(r)
as a function of the reduced separation distance r/σσσσ for
ηηηη=0.2, ηηηη=0.3 and ηηηη=0.4. Lines and symbols are the
same as in Fig. 5.

Table 1. Molecular dynamics simulation data for the nth mo-
ment of the ‘void’ and the ‘particle’ properties, lV

(n) and
lP

(n)

η lV
(1)/σ lV

(2)/σ2 lV
(3)/σ3 lP

(1)/σ l P
(2)/σ2 lP

(3)/σ3

0.15
0.20
0.25
0.30
0.35
0.40
0.45

0.77305
0.69130
0.63342
0.58963
0.55498
0.52668
0.50317

0.66401
0.52792
0.44090
0.38028
0.33547
0.30105
0.27388

0.61697
0.43405
0.32895
0.26180
0.21563
0.18236
0.15748

1.1419
1.0974
1.0691
1.0499
1.0362
1.0262
1.0189

1.3176
1.2112
1.1467
1.1042
1.0748
1.0537
1.0384

1.5378
1.3453
1.2343
1.1637
1.1161
1.0826
1.0586

Fig. 7. The 1st moment (mean) of the ‘particle’ nearest-neigh-
bor distribution function lP

(1) as a function of ηηηη. Lines
and symbols are the same as in Fig. 1.

Fig. 8. The 2nd moment (variance) of the ‘particle’ nearest-
neighbor distribution function lP

(2) as a function of ηηηη.
Lines and symbols are the same as in Fig. 1.
Korean J. Chem. Eng.(Vol. 17, No. 3)
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(n)

and lP
(n)

is directly related to the measurement of the
characteristic pore-size distribution. For instance, the 1st and the
2nd moment of lP

(n)
are the mean and the variation of nearest-

neighbor distance, respectively. In Figs. 7 and 8 we illustrate
the MD data for lP

(1) and lP
(2) together with the theoretical results

determined from the three different approximations. Theoretical
values from Eqs. (26) through (29) were calculated by numeri-
cal integration using the trapezoidal rule with the integration
step of 10−4 σ. As can be seen in these figures, these approxi-
mations are in reasonable qualitative agreement with simulation
results over most of the range of the densities investigated in
this work. In the cases of the scaled-particle and the Percus-
Yevick approximations, the discrepancy is gradually amplified
with increasing densities. As observed in the ‘void’ and ‘particle’
probability functions, the Carnahan-Starling approximation again
yields the best result and the scaled-particle theory gives the
next best agreement compared to our MD simulation data.

CONCLUSION

In the present work, we have reported preliminary simulation
results via the molecular dynamics simulation method to inves-
tigate nearest-neighbor distribution functions and their related
structural properties for hard-sphere systems. The ‘void’ and the
‘particle’ properties such as nearest-neighbor distribution func-
tions and exclusion probability functions were calculated to ex-
amine the density dependence over a wide range of reduced pack-
ing densities. Our simulation results were used to access the ap-
plicabilities of various theoretical predictions appearing in the lit-
erature including the scaled-particle theory, the Percus-Yevick
equation, and the Carnahan-Starling approximation. For lower
density systems these three different approximations give the
nearest-neighbor distribution functions which are very close to
one another and to the resulting MD simulation data. In the cases
of the scaled-particle and the Percus-Yevick approximations, the
discrepancy is gradually amplified with increasing densities. As
has been observed for the equation of state of hard-sphere sys-
tems, the Carnahan-Starling approximation, in comparison with
MD simulation data, has proven to be successful both qualita-
tively and quantitatively in predicting the nearest-neighbor distri-
bution functions over the entire ranges of density conditions in-
vestigated in this work. Also calculated is the nth moment of
nearest-neighbor distribution functions, in which the correspond-
ing length scale is directly related to the measurement of the
characteristic pore-size distribution. The density dependencies on
the pore-size characteristics would be very useful in gaining a
better understanding of how effectively the modification of parti-
cle packing densities influences random pore geometries at the
molecular level.
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