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Abstract−The stability of isothermal spinning of viscoelastic fluids which have strain-rate dependent relaxation
time has been investigated using the linear stability analysis method. The instability known as draw resonance of
the system was found to be dependent upon the material functions of the fluids like fluid relaxation time and the
strain-rate dependency of the relaxation time as well as upon the draw-down ratio of the process. Utilizing the
fundamental physics of the system characterized by the traveling kinematic waves, we also have developed a sim-
ple, approximate method for determining this draw resonance instability ; it requires only the steady state velocity solu-
tions of the system, in contrast to the exact stability analysis method which requires solving the transient equations.
The stability curves produced by this simple, fast method agree well with those by the exact stability method,
proving the utility of the method. The stability of other extensional deformation processes such as film casting
and film blowing can also be analyzed using the method developed in this study.

Key words : Draw Resonance, Linear Stability Analysis, Maxwell Fluids, Strain-Rate Dependent Relaxation Time,
Throughput Waves, Traveling Velocity

INTRODUCTION

The stability of polymer processing is very important in many
respects. First, it is one of the most important subjects to the
people who run the polymers manufacturing facilities, because
along with the sensitivity of the process to outside disturbances
it is always related to the safety, productivity, product quality,
and ultimately to the profitability issue of the concern. Sec-
ond, stability is always of the first interest to theoreticians who
study the fundamental aspects of nonlinear dynamic systems like
existence and uniqueness of the solutions, possibility of oscil-
lation, bifurcation and chaos, etc. Third, due to the intricate nature
of the polymer materials in their structure, and their flow and
deformation behavior, the dynamics of most polymer process-
ing is extremely complicated [Petrie and Denn, 1976].

Thus the stability of continuous processes of polymer pro-
cessing like fiber spinning, film casting, film blowing, calender-
ing, pultrusion, etc. has long been an exciting subject for many
researchers around the world. But it was 1960s when the first
attempt was made regarding this stability issue in the fiber spin-
ning field [Kase and Matsuo, 1965; Matovich and Pearson, 1969].

Then it became immediately clear that even in this seem-
ingly simple fiber spinning, the complexity of the dynamics in-
volved is immense. The three dimensional nature of dynam-
ics, the phase changes occurring inside the fiber, the difficulty
in modeling the stress variables in the amorphous/crystalline
structure, complex heat transfer with the heat of crystalliza-
tion, the inertia effect in high speed spinning, viscoelasticity of
polymer melts, nonlinear constitutive equations, etc. are such
examples, to name just a few [Avenas et al., 1975; Tsou and

Bogue, 1985; Ziabicki and Kawai, 1985; Spruiell et al., 1991].
Against the backdrop of all these fiber spinning details, the

necessity of a stability study of spinning has remained strong.
This is because of two main reasons. One is that as the knowl-
edge level of spinning advances, the fundamental understanding
of the process dynamics, such as its stability, becomes even more
important. The other is the fact that other polymer processing
like film casting and film blowing, where extensional deforma-
tion dominates, possesses basically the same dynamics as spin-
ning, so that extensional phenomena like draw resonance, which
is characterized by a sustained oscillation in the fiber radius and
spinline tension, is equally important in all these processes [Fisher
and Denn, 1976; White and Ide, 1978; Hyun, 1978; Cain and
Denn, 1988; Anturkar and Co., 1988; Kim et al., 1996].

In this study, the draw resonance stability of the isothermal
spinning of convected Maxwell fluids which possess strain-rate
dependent relaxation time has been studied. First, the linear
stability analysis method is employed to study the characteris-
tics of the stability of the system including the effects of mate-
rial functions like fluid relaxation time (elasticity) and the strain-
rate dependency of the relaxation time. Next, a simple, approxi-
mate method for determining the same stability has also been
derived based on the fundamental physics of spinning i.e., the
fact that spinning is a hyperbolic process possessing various kine-
matic waves traveling the spinline including the throughput waves.
The stability curves obtained by this approximate method are
seen to agree well with the exact ones generated by the linear
stability method, proving the utility of the method as a useful
analysis tool in extensional deformation processes.

PROCEDURE OF LINEAR STABILITY ANALYSIS

The governing equations of the isothermal spinning of con-
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vected Maxwell fluids in this study are as follows [Avenas
et al., 1975; Ide and White, 1977; Beris and Liu, 1988] ; a
schematic drawing of the melt spinning process is shown in
Fig. 1.

Equation of continuity :

(1)

Equation of motion :

(2)

Constitutive equation :

(3)

(4)

Strain-rate dependent material relaxation time [Ide and White,
1977] :

(5)

Boundary conditions :

A=Ao, V=Vo, σzz=σo at z=0 for all t' (6)

V=VL=rVo           at z=L for all t' (7)

(The notations appearing here are given in the Nomenclature.)
In the above, the following assumptions have been incor-

porated. First, the whole model is in one-dimensional format,
meaning that the distance coordinate is the only independent
space variable. Second, all the secondary forces on the spin-
line, i.e., inertia, gravity, air drag, and surface tension, are ne-
glected. Third, the origin of the space coordinate is chosen at

the point of extrudate swell, meaning that all the pre-spinneret
deformation history of the fluid is not included in the model.

All these assumptions were adopted in order to simplify the
model and to focus on the extensional deformation which con-
stitutes dominant dynamics in spinning.

Parameter a− of Eq. (5) represents the strain-rate dependency
of material relaxation time which was first introduced by Ide
and White [1977] and then extensively used by Minoshima
and White [1986] in both theoretical and experimental ana-
lyses of various extensional deformation processes.

In order to qualitatively illustrate the draw resonance phe-
nomenon, Fig. 2 is provided here showing the transient be-
havior of the cross-sectional area at the take-up at three differ-
ent values of the draw-down ratio. When the draw-down ratio,
r, is larger than its critical value, i.e., r≥rC, the draw resonance
is clearly established as steady oscillations with distinct peri-
ods and its severity increases with increasing r, whereas if r
is smaller than rC, the system is stable with all disturbances
dying out with time.

Now the usual steps of linear stability analysis are follow-
ed. First, the nondimensionalization of the above governing
equations is in order.

Equation of continuity :

(8)

where, t=t'Vo /L, x=z/L, a=A/Ao, v=V/Vo (9)

Equation of motion :

(10)
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Fig. 1. Schematic diagram of the melt spinning process.
Fig. 2. Transient response of the dimensionless area at the take-

up.
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where, τxx=σzzAo/F, τrr=σrrAo/F (11)

Constitutive equation :

(12)

(13)

where, De=λoVo/L, g=GλoAo/F (14)

Boundary conditions :

a=1, v=1, τxx=τo at x=0 for all t (15)

v=r               at x=1 for all t (16)

where τo is a specified value of stress at the spinneret which
turns out to be relatively unimportant in determining the dy-
namics of spinning process.

Next these dimensionless equations are linearized and then
the perturbations are introduced to the dependent variables as
follows.

(17)

(18)

(19)

(20)

The subscripts s indicates steady state, α, β, γ, and δ are the
perturbed quantities and Ω is a complex eigenvalue that ac-
counts for the growth rate of the perturbation.

Insertion of these perturbed variables into the above dimen-
sionless linearized equations produces the following linear equa-
tions.

Equation of continuity :

(21)

Equation of motion :

(22)

Constitutive equation :

(23)

(24)

Boundary conditions :

(25)

In the above equations, superscript ' denotes .
Discretizing and rearranging the above equations, the follow-

ing algebraic linear matrix equation is obtained.

(26)

where,

A= is (2N+1, 2N+1) matrix whose components are determined
from the algebraic manipulations of Eq. (21)-(25) and N is the
number of mesh points in the discretized spinning distance from
spinneret to take-up.

Given all the parameters and boundary conditions, the eigen-
values of Eq. (26) can be readily obtained. Table 1 shows such
results of the real and imaginary parts of the eigenvalue when
the values of the draw-down ratio and material functions are
given. Here it is immediately noticed that the values of criti-
cal draw-down ratio at the onset of draw resonance are readi-
ly obtained by finding their values, which makes the real parts
of the largest eigenvalue equal to zero. The stability curves sep-
arating the stable and unstable regions in the parameter space
are also readily obtained from the data in Table 1.

Fig. 3 shows such stability curves portraying the effect of
material functions and process conditions. Specifically, the Deb-
orah number, De, representing the dimensionless material relax-
ation time and the draw-down ratio, r, are describing the stabil-
ity regions here along with the strain-rate dependency parame-
ter, a−.

AN APPROXIMATE METHOD FOR
DETERMINING THE STABILITY OF SPINNING

Now that the stability diagram of the isothermal spinning of
convected Maxwell fluids has been obtained using the linear
stability analysis method as shown in Fig. 3, the next subject
is the approximate method for determining the same stability.
This method was developed based on the fundamental phy-
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Table 1. The real and imaginary parts of the eigenvalues for the system having a− =0.4 and De=0.02

Draw-down ratio (r)
1st eigenvalue 2nd eigenvalue 3rd eigenvalue

Ω r Ωi Ωr Ω i Ω r Ω i

15 (stable) −0.533 12.826 0−2.949 31.066 0−4.509 049.264
20.237 (critical) −0.000 13.762 0−2.639 33.588 0−4.359 053.515
30 (unstable) −0.638 15.119 0−2.626 37.492 0−4.694 060.235
50 (unstable) −1.131 17.338 0−4.147 45.121 0−6.925 073.568
70 (unstable) −0.595 19.404 0−7.599 54.469 −10.892 089.525
77.811 (critical) −0.000 20.229 0−9.611 59.008 −13.198 097.042
85 (stable) −0.821 20.995 −11.906 63.805 −15.663 104.824
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sics of spinning process, and the details have been reported by
Jung et al. [1999] (An approximate method for determining
the stability of film casting processes was developed utilizing
the same concept of traveling times of throughput waves and the
fluid residence time which was previously used to derive the
draw resonance criterion in fiber spinning [Kim et al., 1996]).
Hence here only the final equation of the method at the onset
point of draw resonance is reproduced as follows.

(28)

where tL=dimensionless traveling time of throughput waves, ∆t=
dimensionless time difference between the spinline force and
the throughput wave at the take-up, τL=dimensionless fluid re-
sidence time.

The fluid residence time is obtained from the steady state
velocity solution by the following equation.

(29)

where v=dimensionless spinline velocity, x=dimensionless spin-
ning distance from the spinneret.

Eq. (28) is further approximated by the following expression
which was first used by Hyun [1978].

(30)

This is the final approximate criterion equation for draw re-
sonance which thus predicts stability or instability of the sys-
tem according as the left hand side is greater or smaller than
the right hand side, respectively. Solving this equation is rather
simple because the fluid residence time is always readily ob-
tainable from the steady state velocity solution of the system
[Jung et al., 1999].

Fig. 4 shows the stability results thus obtained using Eq. (30).
Despite the approximations introduced in the course of deriv-

ing this equation, these results agree well with the exact ones
of Fig. 3. The utility of the approximate method has thus been
demonstrated here. In other words, without having to obtain
transient solutions of the spinning equations of Eqs. (8)-(16),
the method provides a quick means to determine the stability
of the spinning process approximately.

DISCUSSIONS

Now the results of Table 1, Fig. 3 and Fig. 4 are further dis-
cussed. First, other than the fact that the data of Table 1 show
the way to find the critical draw-down ratio at the onset of
draw resonance, one more point is worth mentioning here. The
period of the draw resonance oscillation at the onset point is
easily obtained from the imaginary part of the eigenvalue as
shown below.

(imaginary part of the eigenvalue)=2π/T (31)

where T=period of draw resonance.
The above relation holds only at the critical draw-down ratio

because harmonic oscillations are possible only at the onset of
draw resonance, while at higher draw-down ratios the oscilla-
tions become skew as shown in Fig. 2.

Table 2 shows the periods of draw resonance at the onset
obtained using Eq. (31). These values exactly coincide with
those obtained by nonlinear simulations of the system, i.e., tran-
sient solutions of the governing equations of Eqs. (8)-(16).

From Fig. 3, the effects of two parameters, i.e., Deborah
number, De, and the strain-rate dependency of the relaxation time,
a− , on the stability are seen to be interrelated to each other. In
other words, depending on whether the parameter a− is larger or
smaller than , the effect of the relaxation time or equiv-
alently Deborah number here, is drastically different. First, if a−

has a value smaller than , there are two stable regions sep-
arated by the in-between unstable region, whereas if  a− is larger,
only one stable region. Second, if  a− is smaller, there exists a

2 tL
∆t
2
-----+ 

  τL≈    at   r rC=

τL
dx
v
------

0

1

∫=

2   rln
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Fig. 3. Stability diagrams of various convected Maxwell fluids
by linear stability method.

Fig. 4. Approximate stability diagrams corresponding to the
same case of Fig. 3.
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maximum Deborah number beyond which there is no unstable
region, whereas if  a− is larger, there is no such critical Debo-
rah number existing. Third, as Deborah number increases, the
system becomes less stable when a− is larger than , but the
stability of the system remains unaffected when  a− is smaller.

Assessing what has been described above, we can see that
there is a dichotomy of the fluids depending on their stability
behavior in spinning, i.e., fluids having smaller values of  a− and
those larger values of a− . This dichotomy is not new in that
there have been many research results in the last couple of de-
cades reporting the similar differences [Petrie and Denn, 1976;
Minoshima and White, 1986; Münstedt and Laun, 1981; Hyun,
1989; Lee et al., 1995]. Such examples include the existence
of large vortices in contraction flow by LDPE as opposed to
small vortices by HDPE, the multiplicity of flow rates at con-
stant wall shear stress in capillary flow by HDPE as opposed
to none by LDPE, the necking behavior by HDPE as opposed
to none by LDPE, and large strain-hardening in extensional
deformation by LDPE as opposed to a small one by HDPE.

As mentioned above, the agreement between the stability cur-
ves in Fig. 3 and Fig. 4 is considered good with rather small
numerical discrepancies in spite of the fact the approximate
method of Eq. (30) was obtained incorporating a couple of
approximations. Since this approximate method only requires
a steady state velocity solution to determine the critical draw-
down ratio at the onset point of draw resonance, this method
is a useful tool to analyze the stability of not only the spin-
ning process but also other extensional deformation processes
like film casting [Jung et al., 1999] and film blowing.

CONCLUSIONS

The exact stability curves of isothermal spinning of convect-
ed Maxwell fluids have been obtained using the linear stabil-
ity analysis method. The stable and unstable regions thus de-
picted in the diagram of the draw-down ratio and Deborah
number reveal the effect of the system parameters of the fluid
elasticity and strain-rate dependency of the relaxation time on the
draw resonance stability. Particularly, the strain-rate dependency
of the relaxation time has turned out to dichotomize the vis-
coelastic fluids into the two groups whose behavior in flow and

deformation are distinctly different from each other. An approx-
imate method for determining the stability has also been applied
to the same system to produce the stability curves which are close
to the exact ones despite the approximations incorporated in the
derivation of the method. This approximate method thus is view-
ed as a useful tool with which to analyze and design extensional
deformation processes like film casting and film blowing as well
as the spinning processes, from which the method was origi-
nally derived.

ACKNOWLEDGEMENTS

The support by the Korea Science and Engineering Founda-
tion for this study under the grant of 96-0502-07-01-3 is duly
appreciated.

NOMENCLATURE

A : spinline cross-sectional area
A
=

: eigenvalue matrix 
a : dimensionless spinline cross-sectional area
a− : parameter representing the strain-rate dependency of

material relaxation times
De : Deborah number
F : spinline tension force
G : material modulus
L : spinning distance between the spinneret and the take-up
N : number of mesh points in the discretized spinning dis-

tance coordinate
r : draw-down ratio
rC : critical draw-down ratio
T : period of draw resonance
t : dimensionless time
t' : time
tL : dimensionless traveling time of throughput waves
∆t : dimensionless time difference between the spinline force

and the throughput wave at the take-up
V : spinline velocity
v : dimensionless spinline velocity
x : dimensionless distance from the spinneret
y− : eigenvector
z : distance from the spinneret

Greek Letters
α : perturbed quantity related to spinline cross-sectional area
β : perturbed quantity related to spinline velocity
δ : perturbed quantity related to spinline axial stress and

radial stress
γ : perturbed quantity related to spinline axial stress
λ : material relaxation time
λo : material relaxation time when no strain-rate is applied
σzz : spinline axial stress
σrr : spinline radial stress
τxx : dimensionless spinline axial stress
τrr : dimensionless spinline radial stress
τL : dimensionless fluid residence time
Ω : eigenvalue

1 3⁄

Table 2. Periods of draw resonance at the onset point for the
system having a− =0.4 and varying De

Deborah
number

(De)

Critical
draw-down

ratio (rc)

Imaginary part 
of the largest 

eigenvalue (Ω i)

Period of draw 
resonance

(T)

0 (Newtonian) 020.218 14.008 0.449
0.001 019.951 13.891 0.452
0.005 019.642 13.674 0.459
0.010 019.233 13.627 0.461
0.020 020.237 13.762 0.457
0.020 077.811 20.229 0.311
0.010 207.337 29.411 0.214
0.006 388.692 38.416 0.164
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Ωr : real part of eigenvalue
Ωi : imaginary part of eigenvalue

Superscript
' : differentiation with respect to x, 

Subscripts
0 : values at the spinneret
C : values at critical (onset) point of draw resonance
L : values at the take-up
S : values at steady state
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