ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2026 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received October 18, 2025
Revised December 10, 2025
Accepted December 11, 2025
Available online November 22, 2025
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Latest issues

하이브리드 물질 시스템을 통한 실리콘 음극재의 부피 팽창 완화

Mitigating Volume Expansion in Silicon Anodes via Hybrid Material Systems

청주대학교
Cheongju University
tgkwon@cju.ac.kr
Korean Chemical Engineering Research, February 2026, 64(1), 105151
https://doi.org/10.9713/kcer.2026.64.1.105151
downloadDownload PDF

Abstract

실리콘 (Si)은 흑연보다  10배 이상 높은 이론적 용량 (~4200 mAh/g)을 지닌 차세대 리튬 이온 배터리 음극재로 주목 받고 있으나 , 충방전 과정에서  400%에 달하는 부피 팽창으로 인해 입자 균열 , 집전체 박리 , 불안정한 고체 전해질 계 면(SEI) 형성 등 심각한 열화 문제가 발생한다 . 이를 해결하기 위해 실리콘은 다양한 하이브리드 재료 시스템과 결합 되어 연구되고 있다 . 본 논문은 실리콘 –탄소 , 실리콘 –금속 산화물 , 실리콘 –2차원 (2D) 재료 , 실리콘 –전도성 고분자 복 합체의 구조적 ·전기화학적 특성을 종합적으로 고찰하였다 . 하이브리드 시스템은 전기 전도성 향상 , 부피 팽창 완화 , SEI 안정화 , 기계적 강도 유지 등에서 시너지 효과를 발휘하며 실리콘 음극의 성능을 크게 개선한다 . 특히 요크 –쉘 (yolk–shell) 구조와 다중 쉘 설계는 장기 사이클 안정성 향상에 핵심적 역할을 한다 . 그러나 낮은 초기 쿨롱 효율 (ICE), 복잡한 제조 공정 및 확장성 한계가 여전히 상용화의 주요 과제로 남아 있다 . 향후 연구는 공정 단순화 , 표면 공학 , 비 용 효율적 하이브리드 구조 설계를 통해 실리콘 음극의 실질적 상용화를 가속화하는 데 초점을 두어야 한다 .

Silicon (Si) is a promising next-generation anode for lithium-ion batteries (LIBs) owing to its high theoretical capacity (~4200 mAh g  ) and low operating potential. However, severe volume expansion during cycling causes cracking, delamination, and unstable SEI formation. To address these challenges, hybrid systems combining Si with carbon, metal oxides, two-dimensional (2D) materials, or conductive polymers have been developed. These systems enhance electrical conductivity, buffer structural stress, and stabilize SEI layers. In particular, yolk–shell and multi-shell architectures effectively accommodate large volume changes and improve cycling stability. Despite significant progress, low initial coulombic efficiency (ICE), complex synthesis, and limited scalability hinder commercialization. Advances in scalable fabrication and surface engineering are essential for practical Si-based high-energy LIBs.

References

1. Yi, X., Qi, G., Liu, X., Depcik, C. and Liu, L., “Challenges and Strategies toward Anode Materials with Different Lithium Stor- age Mechanisms for Rechargeable Lithium Batteries,” J. Energy Storage, 95, 112480(2024).
2. Wang, K., Hua, W., Huang, X., Stenzel, D., Wang, J., Ding, Z., Cui, Y., Wang, Q., Ehrenberg, H., Breitung, B., Kübel, C. and Mu, X., “Synergy of Cations in High Entropy Oxide Lithium Ion Battery Anode,” Nat. Commun., 14, 1487(2023).
3. Shao, G., Hanaor, D. A. H., Wang, J., Kober, D., Li, S., Wang, X., Shen, X., Bekheet, M. F. and Gurlo, A., “Polymer-Derived SiOC Integrated with a Graphene Aerogel as a Highly Stable Li- Ion Battery Anode,” ACS Appl. Mater. Interfaces, 12, 46045- 46056(2020).
4. Cui, Q., Zhong, Y., Pan, L., Zhang, H., Yang, Y., Liu, D., Teng, F., Bando, Y., Yao, J. and Wang, X., “Recent Advances in Designing High-Capacity Anode Nanomaterials for Li-Ion Batteries and Their Atomic-Scale Storage Mechanism Studies,” Adv. Sci., 5, 1700902(2018).
5. Je, M., Han, D.-Y., Ryu, J. and Park, S., “Constructing Pure Si Anodes for Advanced Lithium Batteries,” Acc. Chem. Res., 56, 2213-2224(2023).
6. Ma, Y., Guo, P., Liu, M., Cheng, P., Zhang, T., Liu, J., Liu, D. and He, D., “To Achieve Controlled Specific Capacities of Silicon- Based Anodes for High-Performance Lithium-Ion Batteries,” J. Alloys Compd., 905, 164189(2022).
7. Li, H., Yamaguchi, T., Matsumoto, S., Hoshikawa, H., Kumagai, T., Okamoto, N. L. and Ichitsubo, T., “Circumventing Huge Vol- ume Strain in Alloy Anodes of Lithium Batteries,” Nat. Com- mun., 11, 1584(2020).
8. Shen, H., Wang, Q., Chen, Z., Rong, C. and Chao, D., “Application and Development of Silicon Anode Binders for Lithium-Ion Batteries,” Materials, 16, 4266(2023).
9. Chen, C.-Y., Sano, T., Tsuda, T., Ui, K., Oshima, Y., Yamagata, M., Ishikawa, M., Haruta, M., Doi, T., Inaba, M. and Kuwabata, S., “In Situ Scanning Electron Microscopy of Silicon Anode Reactions in Lithium-Ion Batteries during Charge/Discharge Processes,” Sci. Rep., 6, 36153(2016).
10. Gross, S. J., Hsieh, M.-T., Mumm, D. R., Valdevit, L. and Mohraz, A., “Alleviating Expansion-Induced Mechanical Degradation in Lithium-Ion Battery Silicon Anodes via Morphological Design,”Extreme Mech. Lett., 54, 101746(2022).
11. Müller, S., Pietsch, P., Brandt, B.-E., Baade, P., De Andrade, V., De Carlo, F. and Wood, V., “Quantification and Modeling of Mechanical Degradation in Lithium-Ion Batteries Based on Nanoscale Imag- ing,” Nat. Commun., 9, 2340(2018).
12. Wang, A., Kadam, S., Li, H., Shi, S. and Qi, Y., “Review on Modeling of the Anode Solid Electrolyte Interphase (SEI) for Lithium-Ion Batteries,” Npj Comput. Mater., 4, 15(2018).
13. Ezzedine, M., Jardali, F., Florea, I., Zamfir, M.-R. and Cojocaru, C.-S., “Nanostructuring Strategies for Silicon-Based Anodes in Lithium-Ion Batteries: Tuning Areal Silicon Loading, SEI Forma- tion/Irreversible Capacity Loss, Rate Capability Retention and Electrode Durability,” Batteries Supercaps, 6, e202200451(2023).
14. Haro, M., Kumar, P., Zhao, J., Koutsogiannis, P., Porkovich, A. J., Ziadi, Z., Bouloumis, T., Singh, V., Juarez-Perez, E. J., Toulker- idou, E., Nordlund, K., Djurabekova, F., Sowwan, M. and Grammatiko- poulos, P., “Nano-Vault Architecture Mitigates Stress in Silicon- Based Anodes for Lithium-Ion Batteries,” Commun. Mater., 2, 16(2021).
15. Riedel, O., Düttmann, A., Dühnen, S., Kolny-Olesiak, J., Gutsche, C., Parisi, J., Winter, M., Knipper, M. and Placke, T., “Surface- Modified Tin Nanoparticles and Their Electrochemical Perfor- mance in Lithium Ion Battery Cells,” ACS Appl. Nano Mater., 2, 3577-3589(2019).
16. Sun, L., Jiang, X. and Jin, Z., “Interfacial Engineering of Porous SiOx@C Composite Anodes toward High-performance Lithium- ion Batteries,” Chem. Eng. J., 474, 145960(2023).
17. Seydibeyoğlu, M. Ö., Dogru, A., Wang, J., Rencheck, M., Han, Y., Wang, L., Seydibeyoğlu, E. A., Zhao, X., Ong, K., Shatkin, J. A., Eshaghi, S. S., Bhandari, S., Ozcan, S. and Gardner, D. J., “Review on Hybrid Reinforced Polymer Matrix Composites with Nanocellulose, Nanomaterials, and Other Fibers,” Polymers, 15, 984(2023).
18. Roviello, G., Occhicone, A., De Gregorio, E., Ricciotti, L., Cioffi, R., Ferone, C. and Tarallo, O., “Geopolymer-Based Composite and Hybrid Materials: The Synergistic Interaction between Compo- nents,” Sustainable Mater. Technol., 44, e01404(2025).
19. Liang, Y., Li, Y., Wang, H. and Dai, H., “Strongly Coupled Inor- ganic/Nanocarbon Hybrid Materials for Advanced Electrocatal- ysis,” J. Am. Chem. Soc., 135, 2013-2036(2013).
20. Hou, S.-C., Chen, T.-Y., Wu, Y.-H., Chen, H.-Y., Lin, X.-D., Chen,
Y.-Q., Huang, J.-L. and Chang, C.-C., “Mechanochemical Synthesis of Si/Cu3Si-Based Composite as Negative Electrode Materials for Lithium Ion Battery,” Sci. Rep., 8, 12695(2018).
21. Cheng, Y., Guo, Z., Zheng, C., Zhang, L., Wang, S. and Du, H., “Revisiting the Core Problem Impeding the Commercialization of Silicon-Based Lithium-Ion Batteries,” Energy Mater. Devices, 3, 9370055(2025).
22. Zhang, Z., Ma, R., Yang, J. G., Wang, J. and Peng, Y., “A Review on Mechanical, Electrical, Chemical, and Electrochemical Prop- erties of Coating Materials for Silicon Anodes in Lithium-Ion Batteries,” Small, 21, e06400(2025).
23. Kong, X., Xi, Z., Wang, L., Zhou, Y., Liu, Y., Wang, L., Li, S., Chen,
X. and Wan, Z., “Recent Progress in Silicon-Based Materials for Performance-Enhanced Lithium-Ion Batteries,” Molecules, 28, 2079(2023).
24. Kang, W., Zhang, Q., Jia, Y., Liu, X., Jiang, N., Zhao, Y., Wu, C. and Guan, L., “Enhancing the Cycling Stability of Commercial Sili- con Nanoparticles by Carbon Coating and Thin Layered Single- Walled Carbon Nanotube Webbing,” J. Power Sources, 602, 234338
(2024).
25. Yang, L. Y., Li, H. Z., Liu, J., Sun, Z. Q., Tang, S. S. and Lei, M., “Dual Yolk-shell Structure of Carbon and Silica-coated Sil- icon for High-performance Lithium-ion Batteries,” Sci. Rep., 5, 10908(2015).
26. Jin, B., Liao, L., Shen, X., Mei, Z., Du, Q., Liang, L., Lei, B. and Du, J., “Advancement in Research on Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries,” Metals, 15, 386(2025).
27. Xu, J., Yin, Q., Li, X., Tan, X., Liu, Q., Lu, X., Cao, B., Yuan, X., Li, Y., Shen, L. and Lu, Y., “Spheres of Graphene and Carbon Nanotubes Embedding Silicon as Mechanically Resilient Anodes for Lithium-Ion Batteries,” Nano Lett., 22, 3054-3061(2022).
28. Zhang, Z., Wu, Y., Mo, Z., Lei, X., Xie, X., Xue, X., Qin, H. and Jiang, H., “Research Progress of Silicon-Based Anode Materials for Lithium-Ion Batteries,” RSC Adv., 15, 10731-10753(2025).
29. Vorauer, T., Schöggl, J., Sanadhya, S. G., Poluektov, M., Widanage, W. D., Figiel, L., Schädler, S., Tordoff, B., Fuchsbichler, B., Koller, S. and Brunner, R., “Impact of Solid-Electrolyte Interphase Ref- ormation on Capacity Loss in Silicon-Based Lithium-Ion Batter- ies,” Commun. Mater., 4, 44(2023).
30. Li, J., Fan, S., Xiu, H., Wu, H., Huang, S., Wang, S., Yin, D., Deng,
Z. and Xiong, C., “TiO2-Coated Silicon Nanoparticle Core–Shell Structure for High-Capacity Lithium-Ion Battery Anode Materi- als,” Nanomaterials, 13, 1144(2023).
31. Adenusi, H., Chass, G. A., Passerini, S., Tian, K. V. and Chen, G., “Lithium Batteries and the Solid Electrolyte Interphase (SEI)- Progress and Outlook,” Adv. Energy Mater., 13, 2203307(2023).
32. Lin, Y.-X., Liu, Z., Leung, K., Chen, L.-Q., Lu, P. and Qi, Y., “Con- necting the Irreversible Capacity Loss in Li-Ion Batteries with the Electronic Insulating Properties of Solid Electrolyte Interphase (SEI) Components,” J. Power Sources, 309, 221-230(2016).
33. Sun, L., Wang, L., Wang, T., Liu, Y., Qiao, Y., Lu, X., Qi, M. and Jin, Z., “Fluorinated MXene-engineered LiF-rich Solid Electro- lyte Interphase and Hierarchical Confinement Strategy Enabling High Performance Micro-sized Silicon Anodes,” Nano Res., in press(2025).
34. Lee, K., Yoon, S., Hong, S., Kim, H., Oh, K., Moon, J., “Al2O3- Coated Si-Alloy Prepared by Atomic Layer Deposition as Anodes for Lithium-Ion Batteries,” Materials, 15, 4189(2022).
35. Das, S., Brennhagen, A., Cavallo, C., Killi, V. A.-L. K., Jensen, I. J. T., Thøgersen, A., Mæhlen, J. P., Lai, S. Y., Nilsen, O. and Koposov, A. Y., “Directing SEI Formation on Si-Based Electrodes Using Atomic Layer Deposition,” Chem. Commun., 60, 15011- 15014(2024).
36. Huertas, Z. C., Settipani, D., Flox, C., Morante, J. R., Kallio, T. and Biendicho, J. J., “High Performance Silicon Electrode Enabled by Titanicone Coating,” Sci. Rep., 12, 137(2022).
37. Veith, G. M., Doucet, M., Sacci, R. L., Browning, J. F., An, S. J., Daniel, C. and Wood, D. L., “Determination of the Solid Electrolyte Interphase Structure Built on a Silicon Electrode Using Fluoro- ethylene Carbonate,” Sci. Rep., 7, 6326(2017).
38. Zhang, H., Wang, L., Chen, X., Li, J., Li, X., Xie, X. and Mai, L., “MXene Frameworks Promote the Growth and Stability of LiF- Rich Solid–Electrolyte Interphase on Silicon Anodes,” ACS Appl. Mater. Interfaces, 12, 15110-15120(2020).
39. Gong, L., Hu, B., Wang, J., Xu, H., Liu, J., Yang, Y., Lin, B., Li, M. and Chen, Q., “Cross-Linked β-CD–CMC as an Effective Aque- ous Binder for Silicon Anodes in Lithium-Ion Batteries,” ACS Appl. Mater. Interfaces, 14, 10557-10569(2022).
40. Toki, G. F. I., Hossain, M. K., Rehman, W. U., Manj, R. Z. A., Wang, L. and Yang, J., “Recent Progress and Challenges in Silicon-Based Anode Materials for Lithium-Ion Batteries,” Ind. Chem. Mater., 2, 226-269(2024).
41. Zhou, X., Wan, L.-J. and Guo, Y.-G., “Electrospun Silicon Nanoparticle/ Porous Carbon Hybrid Nanofibers for Lithium-Ion Batteries,” Small, 9, 2684-2688(2013).
42. Zhang, M., Bai, N., Lin, W., Wang, H., Li, J., Ma, L., Wang, X., Zhang, D. and Cao, Z., “Carbon-Encapsulated Silicon Ordered Nanofiber Membranes as High-Performance Anode Material for Lithium-Ion Batteries,” J. Alloys Compd., 1010, 177012(2025).
43. Zhang, D., Wang, Y., Zhao, H., Cai, C., Zhang, Z., Hu, W., Dong, H. and Ding, S., “Embedding Silicon Nanoparticle in Porous Car- bon Fiber for Highly Stable Lithium-Ion Battery Anode,” Mater. Lett., 361, 136015(2024).
44. Mei, Y., He, Y., Zhu, H., Ma, Z., Pu, Y., Chen, Z., Li, P., He, L., Wang, W. and Tang, H., “Recent Advances in the Structural Design of Silicon/Carbon Anodes for Lithium Ion Batteries: A Review,” Coatings, 13, 436(2023).
45. She, Z., Gad, M., Ma, Z., Li, Y. and Pope, M. A., “Enhanced Cycle Stability of Crumpled Graphene-Encapsulated Silicon Anodes via Polydopamine Sealing,” ACS Omega, 6, 12293-12305(2021).
46. Cao, Y., Su, M., Zhang, X., Lin, Q. and Bi, T., “A 3D Network- Based Hierarchical Porous Carbon/Si@C Composite as Anode Material for Lithium-Ion Battery with Desirable Performance,” J. Energy Storage, 98, 112988(2024).
47. Kim, S. K., Chang, H. K., Kim, C. M., Yoo, H. D., Kim, H. S. and Jang, H. D., “Fabrication of Ternary Silicon–Carbon Nano- tubes–Graphene Composites by Co-Assembly in Evaporating Drop- lets for Enhanced Electrochemical Energy Storage,” J. Alloys Compd., 751, 43-48(2018).
48. Min, K. S., Kim, K. T., An, H. L., Go, Y. H., Lee, Y. E., Lim, D. W. and Baeck, S. H., “Yolk-Shell-Structured SiO2@N,P Co-Doped Carbon Spheres as Highly Stable Anode Materials for Lithium Ion Batteries,” J. Power Sources, 543, 231849(2022).
49. Ryu, J., Chen, T., Bok, T., Song, G., Ma, J., Hwang, C., Luo, L., Song, H.-K., Cho, J., Wang, C., Zhang, S. and Park, S., “Mechanical Mismatch-driven Rippling in Carbon-coated Silicon Sheets for Stress-resilient Battery Anodes,” Nat. Commun., 9, 2924(2018).
50. Pappas, G. S., Ferrari, S., Huang, X., Bhagat, R., Haddleton, D. M. and Wan, C., “Heteroatom Doped-Carbon Nanospheres as Anodes in Lithium Ion Batteries,” Materials, 9, 35(2016).
51. Schwan, J., Nava, G. and Mangolini, L., “Critical Barriers to the Large Scale Commercialization of Silicon-containing Batter- ies,” Nanoscale Adv., 2, 4368-4389(2020).
52. Xu, Z. L., Kim, J. K., Jin, B. S., Liu, H., Kim, S., Park, C. and Cho, J., “Carbon-Coated Mesoporous Silicon Microsphere Anodes with Greatly Reduced Volume Expansion for Lithium-Ion Bat- teries,” J. Mater. Chem. A, 4, 10910-10918(2016).
53. Su, Y., Zhang, X., Li, J., Wang, Y., Chen, L., Liu, Q. and Zhou, D., “Scalable Synthesis of Micrometer-Sized Porous Silicon/Carbon Composites (M-pSi@C) for High-Performance Lithium-Ion Battery Anodes,” Chem. Eng. J., 451, 138394(2023).
54. Wang, C., Sireesha, P., Shang, J., McCloy, J. S., Liu, J. and Zhong,
W.-H., “Converting Commercial Fe2O3 to Effective Anode Material Using Glucose as ‘Etching’ Agent,” Ceram. Int., 49, 32652-32662
(2023).
55. Zhou, M., Gordin, M. L., Chen, S., Xu, T., Song, J., Lv, D. and Wang, D., “Enhanced Performance of SiO/Fe2O3 Composite as an Anode for Rechargeable Li-Ion Batteries,” Electrochem. Commun., 28, 79-82(2013).
56. Yan, Y., Chen, Y., Li, Y., Wu, X., Jin, C. and Wang, Z., “Synthesis of Si/Fe2O3-Anchored rGO Frameworks as High-Performance Anodes for Li-Ion Batteries,” Int. J. Mol. Sci., 22, 11041(2021).
57. Wang, Q., Guo, C., He, J., Yang, S., Liu, Z. and Wang, Q., “Fe2O3/C- Modified Si Nanoparticles as Anode Material for High-Perfor- mance Lithium-Ion Batteries,” J. Alloys Compd., 795, 284-290(2019).
58. Wang, B., Su, D., Park, J., Ahn, H. and Wang, G., “Graphene-Supported SnO2 Nanoparticles Prepared by a Solvothermal Approach for an Enhanced Electrochemical Performance in Lithium-Ion Bat- teries,” Nanoscale Res. Lett., 7, 215(2012).
59. Lei, Y., Li, S., Du, M., Mi, J., Gao, D.-C., Hao, L., Jiang, L.-J., Luo, M., Jiang, W.-Q., Li, F. and Wang, S.-H., “Preparation of Double- Shell Si@SnO2@C Nanocomposite as Anode for Lithium-Ion Batteries by Hydrothermal Method,” Rare Met., 42, 2972-2981
(2023).
60. Ma, T., Yu, X., Li, H., Zhang, W., Cheng, X., Zhu, W. and Qiu,
X., “High Volumetric Capacity of Hollow Structured SnO2@Si Nanospheres for Lithium-Ion Batteries,” Nano Lett., 17, 3959- 3964(2017).
61. Li, J., Fan, S., Xiu, H., Wu, H., Huang, S., Wang, S., Yin, D., Deng, Z. and Xiong, C., “TiO2-Coated Silicon Nanoparticle Core-Shell Structure for High-Capacity Lithium-Ion Battery Anode Materi- als,” Nanomaterials, 13, 1144(2023).
62. Han, J., Kong, D., Lv, W., Tang, D.-M., Han, D., Zhang, C., Liu, D., Xiao, Z., Zhang, X., Xiao, J., He, X., Hsia, F.-C., Zhang, C., Tao,
Y., Golberg, D., Kang, F., Zhi, L. and Yang, Q.-H., “Caging Tin Oxide in Three-dimensional Graphene Networks for Superior Volumetric Lithium Storage,” Nat. Commun., 9, 402(2018).
63. Zhu, J., Wang, Y., Li, H., Zhang, Q., Liu, X., Zhao, J. and Chen, Y., “Improving the Electrochemical Performance of Silicon Anodes by Constructing Core–Shell Si@SnO2 Structures,” Appl. Surf. Sci., 573, 151607(2022).
64. Yang, J., Wang, Y., Li, W., Wang, L., Fan, Y., Jiang, W., Luo, W., Wang, Y., Kong, B., Selomulya, C., Liu, H. K., Dou, S. X., Zhao, D., “Amorphous TiO2 Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage,” Adv. Mater. 29, 1700523(2017).
65. Lotfabad, E. M., Kalisvaart, W. P., Cui, X., Kohandehghan, A., Li, Z. and Mitlin, D., “ALD TiO2 Coated Silicon Nanowires for Lithium-Ion Battery Anodes with Enhanced Cycling Stability and Coulombic Efficiency,” Phys. Chem. Chem. Phys., 15, 13646-13657
(2013).
66. Deng, W., Zhang, Y., Liu, J., Li, X. and Zhou, X., “Recent Advances of High-Performance SiOx (067. Zhou, X., Yin, Y., Cao, A. and Wan, L., “Research Progress of Silicon Suboxide-Based Anodes for Lithium-Ion Batteries,” Front. Mater., 8, 628233(2021).
68. Xu, M., Liu, Y., Zhang, H., Li, J., Wang, C. and Guo, Z., “A Low- Cost and High-Capacity SiOx/C@Graphite Hybrid as an Advanced Anode for Lithium-Ion Batteries,” ACS Omega, 5, 17922-17930 (2020).
69. Chen, T., Wu, Z., Zhang, Q., Su, X. and Shen, X., “Recent Advance- ment of SiOx-Based Anodes for Lithium-Ion Batteries,” J. Power Sources, 363, 126-144(2017).
70. Zhang, J., Zuo, X., Li, Y., Yang, J., Liu, X., Guo, Y., Cui, Y. and Zhou, X., “Metallurgically Lithiated SiOx Anode with High Capacity and Ambient Stability for Lithium-Ion Batteries,” Proc. Natl. Acad. Sci. U.S.A., 113, 11636-11641(2016).
71. Yan, M. Y., Zhang, Y., Wang, Z., Li, X., Huang, Z., Wang, J. and Zhang, Q., “Enabling SiOx/C Anode with High Initial Coulombic Efficiency through a Chemical Pre-Lithiation Strategy for High- Energy-Density Lithium-Ion Batteries,” ACS Appl. Mater. Inter- faces, 12, 15337-15345(2020).
72. Zhang, X., Xiao, H., Chen, Y., Wang, L., Yang, J., Xu, H. and Lu, Y., “High-Performance Lithiated SiOx Anode Obtained by a Simple Pre-Lithiation Method for Lithium-Ion Batteries,” ACS Appl. Energy Mater., 2, 6083-6091(2019).
73. Huang, B., Huang, T., Wan, L. and Yu, A., “Pre-Lithiating SiO Anodes for Lithium-Ion Batteries by a Simple, Effective, and Controlla- ble Strategy Using Stabilized Lithium Metal Powder,” ACS Sus- tain. Chem. Eng., 7, 8829-8835(2019).
74. Wang, G., Gao, Q., Wu, H., Jin, Y., Zhang, H. and Wang, H., “High Performance Amorphous-Si@SiOx/C Composite Anode Materials for Li-Ion Batteries Derived from Ball-Milling and in Situ Car- bonization,” J. Power Sources, 256, 190-199(2014).
75. Kong, S., Liu, C., Ren, J., Wang, T., Geng, X., Yuan, Y., Zhao, C., Zhao, C. and Yang, L., “The Synergistic Effect of Cross-Linked and Electrostatic Self-Assembly Si/MXene Composites Anode for Highly Efficient Lithium-Ion Battery,” Coatings, 14, 1210(2024).
76. Tian, H., Li, X., Yang, W., Ying, H., Wang, G. and Han, W.-Q., “Flexible and Freestanding Silicon/MXene Composite Papers for High-Performance Lithium-Ion Batteries,” ACS Appl. Mater. Inter- faces, 11, 13665-13673(2019).
77. Yang, H., Liu, Y., Li, Q., Lu, C., Li, Z., Jiao, Q. and Feng, C., “Facile Electrostatic Assembly of Si@MXene Superstructures for High-Performance Lithium-Ion Batteries,” J. Colloid Inter- face Sci., 586, 12-22(2020).
78. Zhou, Y., Kucheyev, S. O. and Wan, L. F., “First-Principles Elucida- tion of Defect-Mediated Li Transport in Hexagonal Boron Nitride,” Phys. Chem. Chem. Phys., 27, 3997-4003(2025).
79. Yadav, D., Jung, J.-H., Lee, Y., Kim, T. Y.-S., Park, E., Choi, K.-I., Cha, J., Song, W.-J., Choi, J.-H., Doo, S. and Kim, J., “Enhancement of Coulombic Efficiency and Capacity of Li-Ion Batteries Using a Boron Nitride Nanotubes-Dispersed Electrolyte with High Ionic Conductivity,” ACS Mater. Lett., 5, 2648-2655(2023).
80. Marriam, I., Saini, M., Dhiman, P., Gahlaut, R. and Singh, D., “Few- Layer MoS2 Nanosheets with and without Silicon Nanoparticles as Anodes for Lithium-Ion Batteries,” J. Mater. Chem. A, 11, 5420- 5433(2023).
81. Mayorga-Martinez, C. C., Ambrosi, A., Eng, A. Y. S., Sofer, Z. and Pumera, M., “Transition Metal Dichalcogenides (MoS2, MoSe2, WS2 and WSe2) Exfoliation Technique Has Strong Influence upon Their Capacitance,” Electrochem. Commun., 56, 24-28(2015).
82. Balqis, F., Eldona, C., Laksono, B. T., Aini, Q., Hamid, F. H., Wasisto, H. S. and Sumboja, A., “Conductive Polymer Frameworks in Silicon Anodes for Advanced Lithium-Ion Batteries,” ACS Appl. Polym. Mater., 5, 4933-4952(2023).
83. Wu, H., Yu, G., Pan, L., Liu, N., McDowell, M. T., Bao, Z. and Cui, Y., “Stable Li-Ion Battery Anodes by In-Situ Polymerization of Conducting Hydrogel to Conformally Coat Silicon Nanopar- ticles,” Nat. Commun., 4, 1943(2013).
84. Higgins, T. M., Park, S.-H., King, P. J., Zhang, C., McEvoy, N., Berner, N. C., Daly, D., Shmeliov, A., Khan, U., Duesberg, G., Nicolosi, V. and Coleman, J. N., “A Commercial Conducting Poly- mer as Both Binder and Conductive Additive for Silicon Nanoparti- cle-Based Lithium-Ion Battery Negative Electrodes,” ACS Nano, 10, 3702-3713(2016).
85. Dhason, M. V. A., Bhattacharya, I., Mansour, M., Lazer, S. J., Banik, T. and Soyoye, B., “Conductive Polymers in Si Anodes for Lith- ium-Ion Batteries: Advancements, Challenges and Future Aspects,” Mater. Today Energy, 51, 101897(2025).
86. Ka, N. and Rout, C. S., “Conducting Polymers: A Comprehensive Review on Recent Advances in Synthesis, Properties and Appli- cations,” RSC Adv., 11, 5659-5697(2021).
87. Bednarczyk, K., Matysiak, W., Tański, T., Janeczek, H., Schab- Balcerzak, E. and Libera, M., “Effect of Polyaniline Content and Protonating Dopants on Electroconductive Composites,” Sci. Rep., 11, 7487(2021).
88. Tu, J., Hu, L., Wang, W., Hou, J., Zhu, H. and Jiao, S., “In-Situ Synthesis of Silicon/Polyaniline Core/Shell and Its Electrochemi- cal Performance for Lithium-Ion Batteries,” J. Electrochem. Soc., 160, A1916-A1921(2013).
89. Mu, G., Ding, Z., Mu, D., Wu, B., Bi, J., Zhang, L., Yang, H., Wu, H. and Wu, F., “Hierarchical Void Structured Si/PANi/C Hybrid Anode Material for High-Performance Lithium-Ion Batteries,” Electro- chim. Acta, 300, 341-348(2019).
90. Eldona, C., Hawari, N. H., Hamid, F. H., Dempwolf, W., Iskandar, F., Peiner, E., Wasisto, H. S. and Sumboja, A., “A Free-Standing Polyaniline/Silicon Nanowire Forest as the Anode for Lithium-Ion Batteries,” Chem. Asian J., 17, e202200946(2022).
91. Zhou, J., Zhou, L., Yang, L., Chen, T., Li, J., Pan, H., Yang, Y. and Wang, Z., “Carbon Free Silicon/Polyaniline Hybrid Anodes with 3D Conductive Structures for Superior Lithium-Ion Batteries,” Chem. Commun., 56, 2328-2331(2020).
92. Guo, Z. P., Wang, J. Z., Liu, H. K. and Dou, S. X., “Study of Silicon/ Polypyrrole Composite as Anode Materials for Li-Ion Batteries,” J. Power Sources, 146, 448-451(2005).
93. Zhang, S., Chen, S., Wang, Y., Zhang, T., Yue, H., Li, T., Li, W., Li, H., Hao, Y. and Gao, Y., “Fabrication of Polypyrrole-Coated Silicon Nanoparticle Composite Electrode for Lithium-Ion Bat- tery,” Ionics, 30, 7869-7879(2024).
94. Kim, Y., Yoo, S. and Kim, J.-H., “Water-Based Highly Stretchable PEDOT:PSS/Nonionic WPU Transparent Electrode,” Polymers, 14, 949(2022).
95. Yue, L., Wang, S., Zhao, X. and Zhang, L., “Nano-Silicon Compos- ites Using Poly(3,4-Ethylenedioxythiophene):Poly(styrenesulfon- ate) as Elastic Polymer Matrix and Carbon Source for Lithium-Ion Battery Anode,” J. Mater. Chem., 22, 1094-1099(2012).
96. Li, S., Huang, J., Wang, J. and Han, K., “Micro-Sized Porous Sili- con@PEDOT with High Rate Capacity and Stability for Li-Ion Battery Anode,” Mater. Lett., 293, 129712(2021).
97. Wen, W., Liu, Y. and Tamirat, A. G., “Self-Assembled-Monolayer- Induced Polyaniline-Grafted Silicon Nanoparticles for Highly Stable Lithium-Ion Battery Anodes,” ACS Omega, 10, 21030-21039(2025).
98. Maji, R., Salvador, M. A., Ruini, A., Magri, R. and Degoli, E., “A First-Principles Study of Self-Healing Binders for Next-Gen- eration Si-Based Lithium-Ion Batteries,” Mater. Today Chem., 29, 101474(2023).
99. Wu, H., Zheng, G., Liu, N., Carney, T. J., Yang, Y., Cui, Y. and Zhao, J., “Stable Li-Ion Battery Anodes by In-Situ Polymerization of Conducting Hydrogel to Conformally Coat Silicon Nanoparti- cles,” Nat. Commun., 4, 1943(2013).
100. Mu, G., Liu, W., Zhang, Q., Zhang, R., Liu, J., Zhang, X. and Wang, J., “Hierarchical Void Structured Si/PANi/C Hybrid Anode Material for High-Performance Lithium-Ion Batteries,” Electro- chim. Acta, 300, 341-349(2019).

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로