ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 30, 2025
Revised August 11, 2025
Accepted September 29, 2025
Available online October 29, 2025
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Latest issues

탄소중립 실현을 위한 수소 생산, 저장, 활용 기술의 발전 및 통합 가능성 분석

Analysis of Technological Advancements and Integration Potential of Hydrogen Production, Storage, and Utilization for Achieving Carbon Neutrality

전북대학교 반도체·화학공학부
School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Clean Energy Research Center, Jeonbuk National University
shcho5043@jbnu.ac.kr
Korean Chemical Engineering Research, November 2025, 63(4), 105139
https://doi.org/10.9713/kcer.2025.63.4.105139
downloadDownload PDF

Abstract

수소는 탄소중립 실현을 위한 핵심 에너지원으로 부각되며, 에너지 운반체 및 화학 원료로서 다양한 산업 분야에서

활용되고 있다. 본 리뷰는 수소 생산, 저장, 활용 기술을 세 가지 축으로 나누어 최근 5년간의 기술 발전 동향을 종합

적으로 분석하였다. 생산 부문에서는 수전해, 메탄 열분해, 바이오매스 전환, 폐기물 기반 수소화 등 탄소 저감형 기술

의 발전을 다루었고, 저장 부문에서는 고압, 액화, LOHC, 암모니아, 메탄올, 지하 저장 등 다양한 방식의 특성과 한계

를 비교하였다. 활용 측면에서는 연료전지, 직접 연소, 수소 혼합연소, 암모니아 기반 간접 활용, 산업 공정 내 환원제

로의 응용을 고찰하였다. 각 기술군 간의 통합 가능성과 공급망 연계성, 인프라 호환성 등도 함께 분석하였으며, 이를

바탕으로 지속 가능한 수소 에너지 체계 구축을 위한 기술적 방향성과 통합 설계 전략을 제시하였다.

Hydrogen is a pivotal energy carrier in achieving carbon neutrality, offering high versatility as both a fuel and chemical feedstock across diverse sectors. This review categorizes hydrogen technologies into production, storage, and utilization, providing an in-depth analysis of advancements made over the past five years. Production pathways include water electrolysis, methane pyrolysis, biomass conversion, and waste-derived hydrogen. Storage methods such as compressed and liquefied hydrogen, LOHCs, ammonia, methanol, and underground storage are evaluated in terms of density, safety, and infrastructure compatibility. Utilization technologies span fuel cells, direct combustion, hydrogen cofiring, ammonia-based indirect use, and industrial applications such as steelmaking and chemical synthesis. The review emphasizes the integration potential across the hydrogen value chain, identifying key challenges such as energy efficiency, economic feasibility, and system-level compatibility. Based on these findings, technical directions and integration strategies are proposed for establishing a sustainable and resilient hydrogen energy system.

References

1. Osman, A. I., Mehta, N., Elgarahy, A. M., Hefny, M., Al-Hinai,
A., Al-Muhtaseb, A. H. and Rooney, D. W., “Hydrogen Production,
Storage, Utilisation and Environmental Impacts: A
Review,” Environ. Chem. Lett., 20, 153-188(2022).
2. El-Halwagi, M. M., Sengupta, D., Pistikopoulos, E. N., Sammons, J.,
Eljack, F. and Kazi, M. K., “Disaster-Resilient Design of Manufacturing
Facilities Through Process Integration: Principal Strategies,
Perspectives, and Research Challenges,” Frontiers in Sustainability,
1, 595961(2020).
3. Atilhan, S., Park, S., El-Halwagi, M. M., Atilhan, M., Moore,
M. and Nielsen, R. B., “Green Hydrogen as An Alternative Fuel
for the Shipping Industry,” Curr. Opin. Chem. Eng., 31, 100668
(2021).
4. Kovač, A., Paranos, M. and Marciuš, D., “Hydrogen in Energy
Transition: A Review,” Int. J. Hydrogen Energy, 46, 10016-10035
(2021).
5. International Energy Agency, “Global Hydrogen Review 2022,”
IEA (2022).
6. Dincer, I. and Acar, C., “Review and Evaluation of Hydrogen
Production Methods for Better Sustainability,” Int. J. Hydrogen
Energy, 40, 11094-11111(2015).
7. Koh, S., Kim, S. and Lee, B., “Analysis of Scope 1, 2, and 3 GHG
Emissions for Blue Hydrogen Using the GREET Model,” Korean
Chemical Engineering Research, 63, 99-107(2025).
8. World Economic Forum., “Action on Clean Hydrogen is Needed
to Deliver Net-Zero by 2050,”World Economic Forum (2022).
9. Ministry of Trade, Industry and Energy., “2024 Hydrogen Industry
Survey Report,” (2024).
10. Wang, X., Cheng, T., Hong, H., Guo, H., Lin, X., Yang, X., Nie,
B., Hu, Z. and Zou, J., “Challenges and Opportunities in Hydrogen
Storage and Transportation: A Comprehensive Review,” Renewable
and Sustainable Energy Reviews, 219, 117133(2025).
11. Sebbahi, S., Assila, A., Alaoui Belghiti, A., Laasri, S., Kaya, S.,
Hlil, E. K., Rachidi, S. and Hajjaji, A., “A Comprehensive Review
of Recent Advances in Alkaline Water Electrolysis for Hydrogen
Production,” Int. J. Hydrogen Energy, 82, 583-599(2024).
12. Wong, M. and Afrouzi, H. N., “Hydrogen Energy Storage System:
Review on Recent Progress,” Energy Engineering: Journal of the
Association of Energy Engineering, 122, 1-39(2025).
13. Hermesmann, M. and Müller, T. E., “Green, Turquoise, Blue, or
Grey? Environmentally Friendly Hydrogen Production in Transforming
Energy Systems,” Prog. Energy Combust. Sci., 90, 100996
(2022).
14. IEA., “The Future of Hydrogen – Analysis,” IEA (2019).
15. Yong, Y. S. and Abdul Rasid, R., “Process Simulation of Hydrogen
Production Through Biomass Gasification: Introduction of Torrefaction
Pre-Treatment,” Int. J. Hydrogen Energy, 47, 42040-
42050(2022).
16. Midilli, A., Kucuk, H., Topal, M. E., Akbulut, U. and Dincer, I.,
“A Comprehensive Review on Hydrogen Production from Coal
Gasification: Challenges and Opportunities,” Int. J. Hydrogen
Energy, 46, 25385-25412(2021).
17. Ba, Z., Zhao, J., Li, C., Huang, J., Fang, Y., Zhang, L., Kong, L.
and Wang, Q., “Developing Efficient Gasification Technology
for High-Sulfur Petroleum Coke to Hydrogen-Rich Syngas Production,”
Fuel, 267, 117170(2020).
18. Avci, A. C. and Toklu, E., “A New Analysis of Two Phase Flow
on Hydrogen Production from Water Electrolysis,” Int. J. Hydrogen
Energy, 47, 6986-6995(2022).
19. Wiltowski, T., Mondal, K., Campen, A., Dasgupta, D. and Konieczny,
A., “Reaction Swing Approach for Hydrogen Production from
Carbonaceous Fuels,” Int. J. Hydrogen Energy, 33, 293-302(2008).
20. Barba, D., Giacobbe, F., De Cesaris, A., Farace, A., Iaquaniello,
G. and Pipino, A., “Membrane Reforming in Converting Natural
Gas to Hydrogen (Part One),” Int. J. Hydrogen Energy, 33, 3700-
3709(2008).
21. Chaubey, R., Sahu, S., James, O. O. and Maity, S., “A Review
on Development of Industrial Processes and Emerging Techniques
for Production of Hydrogen from Renewable and Sustainable
Sources,” Renewable and Sustainable Energy Reviews, 23, 443-
462(2013).
22. Glenk, G. and Reichelstein, S., “Economics of Converting Renewable
Power to Hydrogen,” Nat. Energy, 4, 216-222(2019).
23. Newborough, M. and Cooley, G., “Developments in the Global
Hydrogen Market: Electrolyser Deployment Rationale and Renewable
Hydrogen Strategies and Policies,” Fuel Cells Bulletin, 2020,
16-22(2020).
24. Wang, P., Wang, J., Jin, R., Li, G., Zhou, M. and Xia, Q., “Integrating
Biogas in Regional Energy Systems to Achieve Near-
Zero Carbon Emissions,” Appl. Energy, 322, 119515(2022).
25. Bouzgarrou, S. M., Farouk, N., Abed, A. M., Khalil, S. A., Dahari,
M., Abdullaev, S., Alhomayani, F. M., Mahariq, I., Alharbi, F. S.
and Islam, S., “Harnessing the Power of Waste in a Poly-Output
System Transforming Biomass Feedstocks into Sustainable Bio-
H2, O2, Electricity, and Heating,” Process Safety and Environmental
Protection, 188, 177-192(2024).
26. Usman, I. M. T., Ho, Y. C., Baloo, L., Lam, M. K. and Sujarwo, W.,
“A Comprehensive Review on the Advances of Bioproducts
from Biomass Towards Meeting Net Zero Carbon Emissions
(NZCE),” Bioresour. Technol., 366, 128167(2022).
27. Burchart, D., Gazda-Grzywacz, M., Grzywacz, P., Burmistrz, P.
and Zarębska, K., “Life Cycle Assessment of Hydrogen Production
from Coal Gasification as An Alternative Transport Fuel,” Energies
(Basel), 16, 383(2023).
28. Mallick, D., Mahanta, P. and Moholkar, V. S., “Co-Gasification
of Coal and Biomass Blends: Chemistry and Engineering,” Fuel,
204, 106-128(2017).
29. Samih, S. and Chaouki, J., “Catalytic Ash Free Coal Gasification in
a Fluidized Bed Thermogravimetric Analyzer,” Powder Technol.,
316, 551-559(2017).
30. Seo, D., Park, Y. and Chu, Y. H., “Energy Optimization of the
Electrified Blue Hydrogen Process Using the Optimal Installation
of Pumparound Flow in CO2 Absorber and Heat Integration Based
on Pinch Analysis,” Korean Chemical Engineering Research, 63,
171-186(2025).
31. Peters, T. A., Stange, M., Klette, H. and Bredesen, R., “High
Pressure Performance of Thin Pd–23%Ag/Stainless Steel Composite
Membranes in Water Gas Shift Gas Mixtures; Influence of
Dilution, Mass Transfer and Surface Effects on the Hydrogen Flux,”
J. Memb. Sci., 316, 119-127(2008).
32. Perry, K. A., Eisman, G. A. and Benicewicz, B. C., “Electrochemical
Hydrogen Pumping Using a High-Temperature Polybenzimidazole
(PBI) Membrane,” J. Power Sources, 177, 478-484 (2008).
33. Bampaou, M., Panopoulos, K., Seferlis, P., Voutetakis, S., Matino, I.,
Petrucciani, A., Zaccara, A., Colla, V., Dettori, S., Branca, T. A. and
Iannino, V., “Integration of Renewable Hydrogen Production in
Steelworks Off-Gases for the Synthesis of Methanol and Methane,”
Energies (Basel), 14, 2904(2021).
34. Levalley, T. L., Richard, A. R. and Fan, M., “The Progress in Water
Gas Shift and Steam Reforming Hydrogen Production Technologies
– A Review,” Int. J. Hydrogen Energy, 39, 16983-17000(2014).
35. Ju, H. K., Badwal, S. and Giddey, S., “A Comprehensive Review
of Carbon and Hydrocarbon Assisted Water Electrolysis for
Hydrogen Production,” Appl. Energy, 231, 502-533(2018).
36. David, M., Ocampo-Martínez, C. and Sánchez-Peña, R., “Advances
in Alkaline Water Electrolyzers: A Review,” J. Energy Storage,
23, 392-403(2019).
37. Sebbahi, S., Nabil, N., Alaoui-Belghiti, A., Laasri, S., Rachidi,
S. and Hajjaji, A., “Assessment of the Three Most Developed
Water Electrolysis Technologies: Alkaline Water Electrolysis,
Proton Exchange Membrane and Solid-Oxide Electrolysis,” Mater.
Today Proc., 66, 140-145(2022).
38. Abejón, R., Fernández-Ríos, A., Domínguez-Ramos, A., Laso,
J., Ruiz-Salmón, I., Yáñez, M., Ortiz, A., Gorri, D., Donzel, N., Jones,
D., Irabien, A., Ortiz, I. and Aldaco, R., “Hydrogen Recovery
from Waste Gas Streams to Feed (High-Temperature PEM) Fuel
Cells: Environmental Performance Under a Life-Cycle Thinking
Approach,” Applied Sciences (Switzerland), 10, 1-19(2020).
39. Wang, M., Wang, Z., Gong, X. and Guo, Z., “The Intensification
Technologies to Water Electrolysis for Hydrogen Production – A
Review,” Renewable and Sustainable Energy Reviews, 29, 573-
588(2014).
40. Buttler, A. and Spliethoff, H., “Current Status of Water Electrolysis
for Energy Storage, Grid Balancing and Sector Coupling Via
Power-to-Gas and Power-to-Liquids: A Review,” Renewable and
Sustainable Energy Reviews, 82, 2440-2454(2018).
41. El-Shafie, M., “Hydrogen Production by Water Electrolysis Technologies:
A Review,” Results in Engineering, 20, 101426(2023).
42. Kriswantoro, J. A., Tseng, C.-H., Fois, F., Chu, C.-Y., Manzo, E.
and Petracchini, F., “Synergetic Hydrogen and Methane Productions
from Anaerobic Digestion of Selected Rural-Farming Plant
and Animal-Based Biomass Wastes,” Korean Journal of Chemical
Engineering, 42, 775-790(2025).
43. Megía, P. J., Vizcaíno, A. J., Calles, J. A. and Carrero, A.,
“Hydrogen Production Technologies: From Fossil Fuels Toward
Renewable Sources. A Mini Review,” Energy & Fuels, 35, 16403-
16415(2021).
44. Sherif, S. A., Barbir, F. and Veziroglu, T. N., “Principles of Hydrogen
Energy Production, Storage and Utilization,” J. Sci. Ind. Res.
(India), 62, 46-63(2003).
45. Pal, D. B., Singh, A. and Bhatnagar, A., “A Review on Biomass
Based Hydrogen Production Technologies,” Int. J. Hydrogen
Energy, 47, 1461-1480(2022).
46. Baum, Z. J., Diaz, L. L., Konovalova, T. and Zhou, Q. A., “Materials
Research Directions Toward a Green Hydrogen Economy: A
Review,” ACS Omega, 7, 32908-32935(2022).
47. Nnabuife, S. G., Hamzat, A. K., Whidborne, J., Kuang, B. and Jenkins,
K. W., “Integration of Renewable Energy Sources in Tandem
with Electrolysis: A Technology Review for Green Hydrogen Production,”
Int. J. Hydrogen Energy, 107, 218-240(2025).
48. Radosits, F., Bartik, A., Ajanovic, A. and Müller, S., “Production
Costs and Greenhouse Gas Mitigation Potential of Hydrogen-
Enhanced Biomethane and Bio-SNG Production,” Journal of
CO2 Utilization, 97, 103105(2025).
49. Wu, H., Wang, Y., Chen, Y. and Gao, X., “Circular Green Hydrogen:
Wastewater Splitting and Waste-Derived Catalysts for Hydrogen
Production,” Int. J. Hydrogen Energy, 143, 59-82(2025).
50. Bagde, A. V. and Paul, M. C., “Waste to Hydrogen: Steam Gasification
of Municipal Solid Wastes with Carbon Capture for
Enhanced Hydrogen Production,” Biomass Bioenergy, 198, 107855
(2025).
51. Martins, I. S., Fraga, G., Zhou, S., Sakheta, A., Ramirez, J. and
O’Hara, I., “Techno-Economic Analysis of Hydrogen Production
in the Sugarcane Industry by Steam Reforming of Ethanol with
Carbon Capture,” Energy Convers. Manag., 328, 119635(2025).
52. Funk, J. E., “Thermochemical Hydrogen Production: Past and
Present,” Int. J. Hydrogen Energy, 26, 185-190(2001).
53. Díaz, M., Ortiz, A. and Ortiz, I., “Progress in the Use of Ionic
Liquids as Electrolyte Membranes in Fuel Cells,” J. Memb. Sci.,
469, 379-396(2014).
54. Sulaiman, M. S., Singh, B. and Mohamed, W. A. N. W., “Experimental
and Theoretical Study of Thermoelectric Generator Waste
Heat Recovery Model for an Ultra-Low Temperature PEM Fuel
Cell Powered Vehicle,” Energy, 179, 628-646(2019).
55. Samylingam, L., Aslfattahi, N., Kok, C. K., Kadirgama, K., Schmirler,
M., Yusaf, T., Ramasamy, D. and Ghazali, M. F., “Underlying
Developments in Hydrogen Production Technologies: Economic
Aspects and Existent Challenges,” Korean Journal of Chemical
Engineering, 41, 2961-2984(2024).
56. Tijani, A. S., Yusup, N. A. B. and Rahim, A. H. A., “Mathematical
Modelling and Simulation Analysis of Advanced Alkaline Electrolyzer
System for Hydrogen Production,” Procedia Technology,
15, 798-806(2014).
57. Ferrero, D., Lanzini, A., Santarelli, M. and Leone, P., “A Comparative
Assessment on Hydrogen Production from Low- and
High-Temperature Electrolysis,” Int. J. Hydrogen Energy, 38,
3523-3536(2013).
58. Huang, D., Xiong, B., Fang, J., Hu, K., Zhong, Z., Ying, Y., Ai,
X. and Chen, Z., “A Multiphysics Model of the Compactly-Assembled
Industrial Alkaline Water Electrolysis Cell,” Appl. Energy,
314, 118987(2022).
59. Daoudi, C. and Bounahmidi, T., “Overview of Alkaline Water Electrolysis
Modeling,” Int. J. Hydrogen Energy, 49, 646-667(2024).
60. Tang, Y., Song, W., Guo, M., Yang, G., Su, K., Zhang, M. and Li,
Z., “Hydrophilic Modified Polyphenylene Sulfide Fabric Separator
for Efficient Alkaline Water Electrolysis,” Int. J. Hydrogen Energy,
126, 66-76(2025).
61. Fragiacomo, P. and Genovese, M., “Modeling and Energy Demand
Analysis of a Scalable Green Hydrogen Production System,”
Int. J. Hydrogen Energy, 44, 30237-30255(2019).
62. Zhang, Z., Baudy, A., Testino, A. and Gubler, L., “Cathode Catalyst
Layer Design in PEM Water Electrolysis Toward Reduced
Pt Loading and Hydrogen Crossover,” ACS Appl. Mater. Interfaces,
16, 23265-23277(2024).
63. Dang, J., Li, Y., Liu, B., Hu, S., Yang, F. and Ouyang, M., “Design
and Economic Analysis of High-Pressure Proton Exchange Membrane
Electrolysis for Renewable Energy Storage,” Int. J. Hydrogen
Energy, 48, 10377-10393(2023).
64. Utgikar, V. and Thiesen, T., “Life Cycle Assessment of High
Temperature Electrolysis for Hydrogen Production Via Nuclear
Energy,” Int. J. Hydrogen Energy, 31, 939-944(2006).
65. Robinson, I. A., Huang, Y. L., Horlick, S. A., Obenland, J., Robinson,
N., Gritton, J. E., Hussain, A. M. and Wachsman, E. D.,
“Mitigating Electronic Conduction in Ceria-Based Electrolytes
Via External Structure Design,” Adv. Funct. Mater., 34, 2308123
(2024).
66. Leng, Y., Chen, G., Mendoza, A. J., Tighe, T. B., Hickner, M. A.
and Wang, C.-Y., “Solid-State Water Electrolysis with an Alkaline
Membrane,” J. Am. Chem. Soc., 134, 9054-9057(2012).
67. Varcoe, J. R., Atanassov, P., Dekel, D. R., Herring, A. M., Hickner,
M. A., Kohl, P. A., Kucernak, A. R., Mustain, W. E., Nijmeijer, K.,
Scott, K., Xu, T. and Zhuang, L., “Anion-Exchange Membranes
in Electrochemical Energy Systems,” Energy Environ. Sci., 7,
3135-3191(2014).
68. Pavel, C. C., Cecconi, F., Emiliani, C., Santiccioli, S., Scaffidi,
A., Catanorchi, S. and Comotti, M., “Highly Efficient Platinum
Group Metal Free Based Membrane-Electrode Assembly for Anion
Exchange Membrane Water Electrolysis,” Angewandte Chemie -
International Edition, 53, 1378-1381(2014).
69. U.S. Department of Energy., “Regional Clean Hydrogen Hubs
(H2Hubs),” U.S. DOE, Washington, DC, (2023).
70. European Commission., “REPowerEU Plan,” European Commission,
Brussels, (2022).
71. Baek, J. M. and Kim, S. H., “Current Status of Water Electrolysis
Technology and Large-Scale Demonstration Projects in Korea
and Abroad,” Transactions of the Korean Hydrogen and New
Energy Society, 35, 14-26(2024).
72. Nakajo, A., Stiller, C., Härkegård, G. and Bolland, O., “Modeling
of Thermal Stresses and Probability of Survival of Tubular
SOFC,” J. Power Sources, 158, 287-294(2006).
73. European Commission., “The 2022 State of the Energy Union,”
European Commission, Brussels, (2022).
74. Okonkwo, E. C., Al-Breiki, M., Bicer, Y. and Al-Ansari, T.,
“Sustainable Hydrogen Roadmap: A Holistic Review and Decision-
Making Methodology for Production, Utilisation and Exportation
Using Qatar as a Case Study,” Int. J. Hydrogen Energy, 46,
35525-35549(2021).
75. Lau, H. C., Ramakrishna, S., Zhang, K. and Radhamani, A. V.,
“The Role of Carbon Capture and Storage in the Energy Transition,”
Energy & Fuels, 35, 7364-7386(2021).
76. Subraveti, S. G., Angel, E. R., Ramírez, A. and Roussanaly, S.,
“Is Carbon Capture and Storage (CCS) Really So Expensive?
An Analysis of Cascading Costs and CO2 Emissions Reduction
of Industrial CCS Implementation on the Construction of a
Bridge,” Environ. Sci. Technol., 57, 2595-2601(2023).
77. Palma, V., Ricca, A., Addeo, B., Rea, M., Paolillo, G. and Ciambelli,
P., “Hydrogen Production by Natural Gas in a Compact ATRBased
kW-Scale Fuel Processor,” Int. J. Hydrogen Energy, 42,
1579-1589(2017).
78. Carapellucci, R. and Giordano, L., “Steam, Dry and Autothermal
Methane Reforming for Hydrogen Production: A Thermodynamic
Equilibrium Analysis,” J. Power Sources, 469, 228391(2020).
79. Boot-Handford, M. E., Abanades, J. C., Anthony, E. J., Blunt,
M. J., Brandani, S., Mac Dowell, N., Fernández, J. R., Ferrari,
M. C., Gross, R., Hallett, J. P., Haszeldine, R. S., Heptonstall, P.,
Lyngfelt, A., Makuch, Z., Mangano, E., Porter, R. T. J., Pourkashanian,
M., Rochelle, G. T., Shah, N., Yao, J. G. and Fennell,
P. S., “Carbon Capture and Storage Update,” Energy Environ. Sci.,
7, 130-189(2014).
80. Global CCS Institute., “The Global Status of CCS:2024,” Australia
(2024).
81. Weger, L., Abánades, A. and Butler, T., “Methane Cracking as a
Bridge Technology to the Hydrogen Economy,” Int. J. Hydrogen
Energy, 42, 720-731(2017).
82. Baharudin, L., “Progress and Future Direction in Turquoise Hydrogen
Production by Methane Pyrolysis Technologies: An Overview
of Solid Catalyst, Plasma, Plasma–Catalyst Hybrid, and Molten
Media Catalyst Systems,” Fuel, 401, 135837(2025).
83. Sánchez-Bastardo, N., Schlögl, R. and Ruland, H., “Methane Pyrolysis
for CO2-Free H2 Production: A Green Process to Overcome
Renewable Energies Unsteadiness,” Chem. Ing. Tech., 92, 1596-
1609(2020).
84. Schneider, S., Bajohr, S., Graf, F. and Kolb, T., “State of the Art
of Hydrogen Production Via Pyrolysis of Natural Gas,” Chem-
Bio Eng Reviews, 7, 150-158(2020).
85. Ingale, G. U., Go, E., Abbas, M., Kim, H., Khalid, T., Lee, Y.,
Kwon, H., Kim, W. and Lee, U., “Methane Pyrolysis Using Metal
Beads for CO2-Free Turquoise Hydrogen Production,” Korean
Journal of Chemical Engineering, 42, 765-773(2025).
86. International Energy Agency., “Global Hydrogen Review 2021,”
IEA (2021).
87. Amin, M., Shah, H. H., Fareed, A. G., Khan, W. U., Chung, E., Zia,
A., Farooqi, Z. U. R. and Lee, C., “Hydrogen Production Through
Renewable and Non-Renewable Energy Processes and Their Impact
on Climate Change,” Int. J. Hydrogen Energy, 47, 33112-33134
(2022).
88. Kim, Y., Lee, S., Jung, S., Lee, J. and Cho, H., “Carbon Dioxide-
Based Plastic Pyrolysis for Hydrogen Production Process: Sustainable
Recycling of Waste Fishing Nets,” Korean Chem. Eng.
Res., 62, 36-43(2024).
89. Mehra, A., Ram, N. R. and Srivastava, N. K., “Review of Hydrogen
Production Using Organic Waste Materials: Role of Industry 4.0
in Waste Valuation,” Korean Journal of Chemical Engineering,
42, 455-481(2025).
90. Lubitz, W. and Tumas, W., “Hydrogen: An Overview,” Chem. Rev.,
107, 3900-3903(2007).
91. Singh, N. and Sarma, S., “Biological Routes of Hydrogen Production:
A Critical Assessment,” Handbook of Biofuels, 419-434
(2022).
92. Kumar, G., Eswari, A. P., Kavitha, S., Kumar, M. D., Kannah, R.
Y., How, L. C., Muthukaruppan, G. and Banu, J. R., “Thermochemical
Conversion Routes of Hydrogen Production from Organic
Biomass: Processes, Challenges and Limitations,” Biomass Convers.
Biorefin., 13, 8509-8534(2023).
93. Rathi, B. S., Kumar, P. S., Rangasamy, G. and Rajendran, S., “A
Critical Review on Biohydrogen Generation from Biomass,” Int.
J. Hydrogen Energy, 52, 115-138(2024).
94. Situmorang, Y. A., Zhao, Z., An, P., Yu, T., Rizkiana, J., Abudula,
A. and Guan, G., “A Novel System of Biomass-Based Hydrogen
Production by Combining Steam Bio-Oil Reforming and Chemical
Looping Process,” Appl. Energy, 268, 115122(2020).
95. Liu, L., Zheng, Y. and Liu, X., “Artificial Neural Networks for
Modeling of Biohydrogen Production Systems,” Waste to Renewable
Biohydrogen: Numerical Modelling and Sustainability Assessment,
2, 93-105(2023).
96. Rabea, K., Michailos, S., Hughes, K. J., Ingham, D. and Pourkashanian,
M., “A New Hydrogen Production Route Through Biomass
Gasification in a Two-Stage Fixed Bed Reactor Within the BECCS
Concept: A Techno-Economic and Life Cycle Assessment Study,”
Int. J. Hydrogen Energy, 124, 140-152(2025).
97. Tawalbeh, M., Alarab, S., Al-Othman, A. and Javed, R. M. N.,
“The Operating Parameters, Structural Composition, and Fuel
Sustainability Aspects of PEM Fuel Cells: A Mini Review,” Fuels,
3, 449-474(2022).
98. Mao, Y., Gao, Y., Dong, W., Wu, H., Song, Z., Zhao, X., Sun, J.
and Wang, W., “Hydrogen Production Via a Two-Step Water Splitting
Thermochemical Cycle Based on Metal Oxide – A Review,”
Appl. Energy, 267, 114860(2020).
99. Arribas, L., González-Aguilar, J. and Romero, M., “Solar-Driven
Thermochemical Water-Splitting by Cerium Oxide: Determination
of Operational Conditions in a Directly Irradiated Fixed Bed
Reactor,” Energies (Basel), 11, 2451(2018).
100. Zhang, K., Ma, M., Li, P., Wang, D. H. and Park, J. H., “Water
Splitting Progress in Tandem Devices: Moving Photolysis Beyond
Electrolysis,” Adv. Energy Mater., 6, 1600602(2016).
101. Buvaneswari, K., Pitchaimani, E., Anand, S. and Arunadevi,
R., “Facile Preparation, Characterization and Photocatalytic Properties
of Barium Carbonate Nanoparticles,” Desalination Water
Treat., 314, 122-129(2023).
102. Alhaddad, M., Shawky, A. and Zaki, Z. I., “Photocatalytic Oxidative
Desulfurization of Thiophene by Exploiting a Mesoporous
V2O5-ZnO Nanocomposite as An Effective Photocatalyst,” Catalysts,
12, 933(2022).
103. Li, K., Fan, Q., Chuai, H., Liu, H., Zhang, S. and Ma, X., “Revisiting
Chlor-Alkali Electrolyzers: From Materials to Devices,”
Transactions of Tianjin University, 27, 202-216(2021).
104. Kumar, A., Du, F. and Lienhard, J. H., “Caustic Soda Production,
Energy Efficiency, and Electrolyzers,” ACS Energy Lett.,
6, 3563-3566(2021).
105. Paulu, A., Matuštík, J. and Trecáková, T., “Overlooked Source
of Hydrogen: The Environmental Potential of Chlor-Alkali By-
Product,” Int. J. Hydrogen Energy, 49, 1437-1443(2024).
106. Zhuang, R., Wang, X., Guo, M., Zhao, Y., El-Farra, N. H. and
Palazoglu, A., “Waste-to-Hydrogen: Recycling HCl to Produce
H2 and Cl2,” Appl. Energy, 259, 114184(2020).
107. Vyawahare, P., Sun, P., Young, B., Bafana, A., Kim, T., Hawkins,
T. R. and Elgowainy, A., “Life Cycle Greenhouse Gas Emissions
Analysis of the Chlor-Alkali Process and By-Product Hydrogen
in the United States,” Hydrogen (Switzerland), 6, 12(2025).
108. Suer, J., Traverso, M. and Jäger, N., “Carbon Footprint Assessment
of Hydrogen and Steel,” Energies (Basel), 15, 9468(2022).
109. Hermesmann, M. and Müller, T. E., “Green, Turquoise, Blue,
or Grey? Environmentally Friendly Hydrogen Production in
Transforming Energy Systems,” Prog. Energy Combust. Sci.,
90, 100996(2022).
110. Roy, R., Antonini, G., Hayibo, K. S., Rahman, M. M., Khan, S.,
Tian, W., Boutilier, M. S. H., Zhang, W., Zheng, Y., Bassi, A.
and Pearce, J. M., “Comparative Techno-Environmental Analysis
of Grey, Blue, Green/Yellow and Pale-Blue Hydrogen Production,”
Int. J. Hydrogen Energy, 116, 200-210(2025).
111. Cho, H. H., Strezov, V. and Evans, T. J., “A Review on Global
Warming Potential, Challenges and Opportunities of Renewable
Hydrogen Production Technologies,” Sustainable Materials
and Technologies, 35, e00567(2023).
112. Kerscher, F., Stary, A., Gleis, S., Ulrich, A., Klein, H. and
Spliethoff, H., “Low-Carbon Hydrogen Production Via Electron
Beam Plasma Methane Pyrolysis: Techno-Economic Analysis
and Carbon Footprint Assessment,” Int. J. Hydrogen Energy,
46, 19897-19912(2021).
113. Hamed, A. M., Kamaruddin, T. N. A. T., Ramli, N. and Wahab,
M. F. A., “A Review on Blue and Green Hydrogen Production
Process and Their Life Cycle Assessments,” IOP Conf. Ser. Earth
Environ. Sci., Institute of Physics, 1281, 012034(2023).
114. Sinigaglia, T., Lewiski, F., Martins, M. E. S. and Siluk, J. C.
M., “Production, Storage, Fuel Stations of Hydrogen and Its
Utilization in Automotive Applications-A Review,” Int. J. Hydrogen
Energy, 42, 24597-24611(2017).
115. Wang, X., Shao, L., Hu, S., Li, Z., Guo, H., Zhang, J., Zhao, Y.,
Lin, X., Nie, B., Hu, Z. and Zou, J., “A Techno-Economic Study of
Photovoltaic-Solid Oxide Electrolysis Cell Coupled Magnesium
Hydride-Based Hydrogen Storage and Transportation Toward
Large-Scale Applications of Green Hydrogen,” Energy Environ.
Sci., 17, 8429-8456(2024).
116. Niermann, M., Drünert, S., Kaltschmitt, M. and Bonhoff, K.,
“Liquid Organic Hydrogen Carriers (LOHCs) – Techno-Economic
Analysis of LOHCs in a Defined Process Chain,” Energy Environ.
Sci., 12, 290-307(2019).
117. Berstad, D., Gardarsdottir, S., Roussanaly, S., Voldsund, M.,
Ishimoto, Y. and Nekså, P., “Liquid Hydrogen as Prospective
Energy Carrier: A Brief Review and Discussion of Underlying
Assumptions Applied in Value Chain Analysis,” Renewable and
Sustainable Energy Reviews, 154, 111772(2022).
118. Park, B. H., “Calculation and Comparison of Thermodynamic
Properties of Hydrogen Using Equations of State for Compressed
Hydrogen Storage,” Transctions of the Korean Hydrogen and
New Energy Society, 31, 184-193(2020).
119. Aasadnia, M. and Mehrpooya, M., “Large-Scale Liquid Hydrogen
Production Methods and Approaches: A Review,” Appl.
Energy, 212, 57-83(2018).
120. Ustolin, F., Campari, A. and Taccani, R., “An Extensive Review of
Liquid Hydrogen in Transportation with Focus on the Maritime
Sector,” J. Mar. Sci. Eng., 10, 1222(2022).
121. Kang, D., Mun, H., Park, J. and Lee, I., “System Design and
Economic Evaluation of a Liquid Hydrogen Superstation,” Korean
Journal of Chemical Engineering, 42, 233-255(2025).
122. Liu, Y., Chabane, D. and Elkedim, O., “Optimization of LaNi5
Hydrogen Storage Properties by the Combination of Mechanical
Alloying and Element Substitution,” Int. J. Hydrogen Energy,
53, 394-402(2024).
123. Liu, X., Meng, X., Zhong, T., Wang, Y., Wu, F., Liu, H., Li, H. and
Zhang, L., “Polymeric Carbon Nitride Supported Single-Phase
Ni with Exceptional Catalytic Effect on MgH2 for Hydrogen
Storage,” J. Alloys Compd., 1032, 181259(2025).
124. Khan, H. B. and Zhang, T., “Metal Hydride Hydrogen Storage
Risk Assessment: A Review,” J. Energy Storage, 129, 117273
(2025).
125. Harisankar, U. S., Menon, S. K., Babu, J. S. and Shankar, B.,
“Exploring Carbon Nanotubes for Enhanced Hydrogen Storage:
A Review on Synthesis, Mechanisms, and Evaluation,”
Korean Journal of Chemical Engineering, 42, 13-42(2025).
126. Ramirez-Vidal, P., Sdanghi, G., Celzard, A. and Fierro, V., “High
Hydrogen Release by Cryo-Adsorption and Compression on
Porous Materials,” Int. J. Hydrogen Energy, 47, 8892-8915(2022).
127. Langmi, H. W., Walton, A., Al-Mamouri, M. M., Johnson, S.
R., Book, D., Speight, J. D., Edwards, P. P., Gameson, I., Anderson,
P. A. and Harris, I. R., “Hydrogen Adsorption in Zeolites
A, X, Y and RHO,” J. Alloys Compd., 356–357, 710-715(2003).
128. Sung, K., Lee, Y., Yook, H. and Han, J. W., “Computation-Based
Development of Carrier Materials and Catalysts for Liquid
Organic Hydrogen Carrier Systems,” Korean Journal of Chemical
Engineering, 42, 195-223(2025).
129. Sedminek, A., Likozar, B. and Gyergyek, S., “Electrification of
Selective Catalytic Liquid Organic Hydrogen Carriers: Hydrogenation
and Dehydrogenation Reactions,” ACS Omega, 9, 6027-
6035(2024).
130. D’Ambra, F. and Gébel, G., “Literature Review: State-of-the-Art
Hydrogen Storage Technologies and Liquid Organic Hydrogen
Carrier (LOHC) Development,” Science and Technology for
Energy Transition (STET), 78, 1-60(2023).
131. Ren, L., Li, Y., Zhang, N., Li, Z., Lin, X., Zhu, W., Lu, C., Ding, W.
and Zou, J., “Nanostructuring of Mg-Based Hydrogen Storage
Materials: Recent Advances for Promoting Key Applications,”
Nanomicro Lett., 15, 93(2023).
132. Zainal, B. S., Ker, P. J., Mohamed, H., Ong, H. C., Fattah, I. M. R.,
Rahman, S. M. A., Nghiem, L. D. and Mahlia, T. M. I., “Recent
Advancement and Assessment of Green Hydrogen Production
Technologies,” Renewable and Sustainable Energy Reviews, 189,
113941(2024).
133. Rkhis, M., Laasri, S., Touhtouh, S., Belhora, F., Hlil, E. K., Zaidat,
K., Obbade, S. and Hajjaji, A., “Recent Advances in Magnesium
Hydride for Solid-State Hydrogen Storage by Mechanical Treatment:
A DFT Study,” Int. J. Hydrogen Energy, 48, 35650-35660
(2023).
134. Kirichenko, O. A. and Kustov, L. M., “Recent Progress in
Development of Supported Palladium Catalysts for Dehydrogenation
of Heterocyclic Liquid Organic Hydrogen Carriers
(LOHC),” Int. J. Hydrogen Energy, 88, 97-119(2024).
135. Perreault, P., Van Hoecke, L., Pourfallah, H., Kummamuru, N.
B., Boruntea, C. R. and Preuster, P., “Critical Challenges Towards
the Commercial Rollouts of a LOHC-Based H2 Economy,” Curr.
Opin. Green Sustain. Chem., 41, 100836(2023).
136. Rao, P. C. and Yoon, M., “Potential Liquid-Organic Hydrogen
Carrier (LOHC) Systems: A Review on Recent Progress,” Energies
(Basel), 13, 6040(2020).
137. Bárkányi, Á., Tarcsay, B. L., Lovas, L., Mérő, T. and Chován,
T., “Future of Hydrogen Economy: Simulation-Based Comparison
of LOHC Systems,” Clean Technol. Environ. Policy, 26,
1521-1536(2024).
138. Britannica, E., “Available Online: Https://Www. Britannica.
Com/Science, Geophone,” (2021).
139. Zhang, C., Yuan, Z., Liu, N., Wang, S. and Wang, S., “Study of
Catalysts for Hydrogen Production by the High Temperature
Steam Reforming of Methanol,” Fuel Cells, 6(6), 466-471(2006).
140. Zhang, M., Ge, B., Gan, Z., Liu, S., Li, S., Shi, Y. and Zhu, X.,
“Integrated Power to Methanol Processes with Steam-Assisted
Direct Air Capture,” Energy Convers. Manag., 326, 119505(2025).
141. Chen, Z., Ma, Z., Zheng, J., Li, X., Akiba, E. and Li, H. W.,
“Perspectives and Challenges of Hydrogen Storage in Solid-
State Hydrides,” Chin. J. Chem. Eng., 29, 1-12(2021).
142. Orlić, M., Hochenauer, C., Nagpal, R. and Subotić, V., “Electrochemical
Reduction of CO2: A Roadmap to Formic and
Acetic Acid Synthesis for Efficient Hydrogen Storage,” Energy
Convers. Manag., 314, 118601(2024).
143. Massaro, M. C., Aluia, F., Biga, R. and Accardo, G., “Potential
of Ammonia as Hydrogen Storage for Future Electrified Aircraft,”
Energy Conversion and Management: X, 26, 101034(2025).
144. Lord, A. S., Kobos, P. H. and Borns, D. J., “Geologic Storage
of Hydrogen: Scaling Up to Meet City Transportation Demands,”
Int. J. Hydrogen Energy, 39, 15570-15582(2014).
145. Ozarslan, A., “Large-Scale Hydrogen Energy Storage in Salt
Caverns,” Int. J. Hydrogen Energy, 37, 14265-14277(2012).
146. Mwakipunda, G. C., Kouassi, A. K. F., Ayimadu, E. T., Komba,
N. A., Nadege, M. N., Mgimba, M. M., Ngata, M. R. and Yu,
L., “Underground Hydrogen Storage in Geological Formations: A
Review,” Journal of Rock Mechanics and Geotechnical Engineering,
014(2025).
147. Thiyagarajan, S. R., Emadi, H., Hussain, A., Patange, P. and
Watson, M., “A Comprehensive Review of the Mechanisms
and Efficiency of Underground Hydrogen Storage,” J. Energy
Storage, 51, 104490(2022).
148. Chen, X., Zhou, H., Li, W., Yu, Z., Gong, G., Yan, Y., Luo, L.,
Wan, Z. and Ding, Y., “Multi-Criteria Assessment and Optimization
Study on 5 KW PEMFC Based Residential CCHP System,”
Energy Convers. Manag., 160, 384-395(2018).
149. Wang, Y., Chen, K. S., Mishler, J., Cho, S. C. and Adroher, X.
C., “A Review of Polymer Electrolyte Membrane Fuel Cells:
Technology, Applications, and Needs on Fundamental Research,”
Appl. Energy, 88, 981-1007(2011).
150. Ceraolo, M., Miulli, C. and Pozio, A., “Modelling Static and
Dynamic Behaviour of Proton Exchange Membrane Fuel Cells
on the Basis of Electro-Chemical Description,” J. Power Sources,
113, 131-144(2003).
151. Zeng, H., Wang, Y., Shi, Y., Cai, N. and Yuan, D., “Highly Thermal
Integrated Heat Pipe-Solid Oxide Fuel Cell,” Appl. Energy, 216,
613-619(2018).
152. Itaoka, K., Saito, A. and Sasaki, K., “Public Perception on Hydrogen
Infrastructure in Japan: Influence of Rollout of Commercial Fuel
Cell Vehicles,” Int. J. Hydrogen Energy, 42, 7290-7296(2017).
153. Wallner, T., Lohse-Busch, H., Gurski, S., Duoba, M., Thiel, W.,
Martin, D. and Korn, T., “Fuel Economy and Emissions Evaluation
of BMW Hydrogen 7 Mono-Fuel Demonstration Vehicles,” Int. J.
Hydrogen Energy, 33, 7607-7618(2008).
154. Lopes, J. V. M., Bresciani, A. E., Carvalho, K. M., Kulay, L. A.
and Alves, R. M. B., “Multi-Criteria Decision Approach to Select
Carbon Dioxide and Hydrogen Sources as Potential Raw Materials
for the Production of Chemicals,” Renewable and Sustainable
Energy Reviews, 151, 111542(2021).
155. Rashidi, S., Karimi, N., Sunden, B., Kim, K. C., Olabi, A. G. and
Mahian, O., “Progress and Challenges on the Thermal Management
of Electrochemical Energy Conversion and Storage Technologies:
Fuel Cells, Electrolysers, and Supercapacitors,” Prog.
Energy Combust. Sci., 88, 100966(2022).
156. Felseghi, R. A., Carcadea, E., Raboaca, M. S., Trufin, C. N. and
Filote, C., “Hydrogen Fuel Cell Technology for the Sustainable
Future of Stationary Applications,” Energies (Basel), 12, 4593
(2019).
157. Renau, J., García, V., Domenech, L., Verdejo, P., Real, A., Giménez,
A., Sánchez, F., Lozano, A. and Barreras, F., “Novel Use of Green
Hydrogen Fuel Cell-Based Combined Heat and Power Systems to
Reduce Primary Energy Intake and Greenhouse Emissions in
the Building Sector,” Sustainability (Switzerland), 13, 1-19(2021).
158. Tawalbeh, M., Alarab, S., Al-Othman, A. and Javed, R. M. N.,
“The Operating Parameters, Structural Composition, and Fuel
Sustainability Aspects of PEM Fuel Cells: A Mini Review,”
Fuels, 3, 449-474(2022).
159. Lim, H. S., Kang, B., Ahn, M. and Kim, M. S., “Optimizing
Hydrogen Utilization in Fuel Cell Hybrid Vehicles: Modeling
Fuel Cell Systems and Managing Energy Between Batteries
and Fuel Cells,” Int. J. Hydrogen Energy, 99, 819-835(2025).
160. Oh, S., Kim, Y., Lee, S., Yoo, D. and Park, K., “Effect of Compensation
for Thickness Reduction by Chemical Degradation
of PEMFC Membrane on Performance and Durability,” Korean
Chemical Engineering Research, 62, 1-6(2024).
161. Liao, P., Yang, D., Pan, X., Li, B., Ming, P. and Li, Z., “Enhancing
the Dynamic Performance of Proton Exchange Membrane Fuel
Cells Through Two-Phase Flow Experimental Investigation,”
Int. J. Hydrogen Energy, 48, 32093-32109(2023).
162. Kumuk, B., Atak, N. N., Dogan, B., Ozer, S. and Demircioglu,
P., “Numerical and Thermodynamic Analysis of the Effect of
Operating Temperature in Methane-Fueled SOFC,” Energies,
17, 2603(2024).
163. Ni, M., “Modeling of Solid Oxide Fuel Cells,” Sci. Bull. (Beijing),
61, 1311-1312(2016).
164. Hu, L., Rexed, I., Lindbergh, G. and Lagergren, C., “Electrochemical
Performance of Reversible Molten Carbonate Fuel
Cells,” Int. J. Hydrogen Energy, 39, 12323-12329(2014).
165. Marefati, M. and Mehrpooya, M., “Introducing and Investigation
of a Combined Molten Carbonate Fuel Cell, Thermoelectric
Generator, Linear Fresnel Solar Reflector and Power Turbine
Combined Heating and Power Process,” J. Clean. Prod., 240,
118247(2019).
166. Acar, C. and Dincer, I., “The Potential Role of Hydrogen as a
Sustainable Transportation Fuel to Combat Global Warming,”
Int. J. Hydrogen Energy, 45, 3396-3406(2020).
167. Olabi, A. G., Wilberforce, T. and Abdelkareem, M. A., “Fuel Cell
Application in the Automotive Industry and Future Perspective,”
Energy, 214, 118955(2021).
168. Zhou, F., Wu, C., Fu, J., Liu, J., Duan, X. and Sun, Z., “Abnormal
Combustion and NOx Emissions Control Strategies of Hydrogen
Internal Combustion Engine,” Renewable and Sustainable
Energy Reviews, 219, 115847(2025).
169. Bălănescu, D. T. and Homutescu, V. M., “Effects of Hydrogen-
Enriched Methane Combustion on Latent Heat Recovery
Potential and Environmental Impact of Condensing Boilers,”
Appl. Therm. Eng., 197, 117411(2021).
170. Cho, S., Park, C., Oh, M., Park, J., Kim, H. and Moon, I., “Optimal
Operating Condition of Fluidized Bed Propellant Incinerator
Considering Fluidization Effect and Reaction of the Particles,”
Computer Aided Chemical Engineering, 38, 1147-1152(2016).
171. Cho, S., Park, C., Lee, J., Lyu, B. and Moon, I., “Finding the Best
Operating Condition in a Novel Process for Explosive Waste
Incineration Using Fluidized Bed Reactors,” Comput. Chem. Eng.,
142, 107054(2020).
172. Cho, S., Kang, D., Kwon, J. S. I., Kim, M., Cho, H., Moon, I.
and Kim, J., “A Framework for Economically Optimal Operation
of Explosive Waste Incineration Process to Reduce NOx Emission
Concentration,” Mathematics, 9, 2174(2021).
173. Lee, B.-H., Eddings, E. G. and Jeon, C.-H., “Effect of Coal Blending
Methods with Different Excess Oxygen on Unburned Carbon
and NOx Emissions in an Entrained Flow Reactor,” Energy &
Fuels, 26, 6803-6814(2012).
174. Reichel, T. G. and Paschereit, C. O., “Interaction Mechanisms
of Fuel Momentum with Flashback Limits in Lean-Premixed
Combustion of Hydrogen,” Int. J. Hydrogen Energy, 42, 4518-
4529(2017).
175. Park, S., Shin, Y., Jeong, E. and Han, M., “Techno-Economic Analysis
of Green and Blue Hybrid Processes for Ammonia Production,”
Korean Journal of Chemical Engineering, 40, 2657-2670
(2023).
176. Kim, I., Oh, J., Kim, T. and Cho, S., “Analysis of Gas Emissions
and Power Generation for Co-Firing Ratios of NG, NH3, and
H2 Based on NGCC,” Korean Chem. Eng. Res., 62, 1-8(2024).
177. Cho, S. and Kim, J., “Cost Saving of the Explosive Waste Incineration
Process Via an Optimal Heat Exchanger Network,” ACS
Omega, 7, 18681-18687(2022).
178. di Gaeta, A., Reale, F., Chiariello, F. and Massoli, P., “A
Dynamic Model of a 100 KW Micro Gas Turbine Fuelled with
Natural Gas and Hydrogen Blends and Its Application in a
Hybrid Energy Grid,” Energy, 129, 299-320(2017).
179. Kim, J., Yu, J., Lee, S., Tahmasebi, A., Jeon, C. H. and Lucas,
J., “Advances in Catalytic Hydrogen Combustion Research:
Catalysts, Mechanism, Kinetics, and Reactor Designs,” Int. J.
Hydrogen Energy, 46, 40073-40104(2021).
180. Oh, J., Kim, I., Im, M., Kang, D. and Cho, S., “A Study on the
Co-Firing of Ammonia, Hydrogen, and Methanol with Natural
Gas in a 100 MW NGCC Process for Carbon Neutrality,” Fuel
Processing Technology, 277, 108313(2025).
181. Perrin-Terrin, J. B., Vaysse, N., Durox, D., Vicquelin, R., Candel,
S., Laux, C. O. and Renaud, A., “Plasma-Assisted Combustion of
Hydrogen Swirling Flames: Extension of Lean Blowout Limit
and NOx Emissions,” Proceedings of the Combustion Institute,
40, 105546(2024).
182. Cho, S., Kim, M., Lee, J., Han, A., Na, J. and Moon, I., “Multi-
Objective Optimization of Explosive Waste Treatment Process
Considering Environment Via Bayesian Active Learning,”
Eng. Appl. Artif. Intell., 117, 105463(2023).
183. Cho, S., Kim, Y., Kim, M., Cho, H., Moon, I. and Kim, J.,
“Multi-Objective Optimization of an Explosive Waste Incineration
Process Considering Nitrogen Oxides Emission and Process
Cost by Using Artificial Neural Network Surrogate Models,”
Process Safety and Environmental Protection, 162, 813-824
(2022).
184. Vigneswaran, V. S., Gowd, S. C., Ravichandran, V., Karthikeyan,
M., Ganeshan, P., Kandasamy, S., Lee, J., Barathi, S. and Rajendran,
K., “Green Ammonia as Hydrogen Carrier: Current Status,
Barriers, and Strategies to Achieve Sustainable Development
Goals,” Science of The Total Environment, 982, 179646(2025).
185. Li, C., Hao, Q., Zhang, W., Wang, S. and Yang, J., “Development
Strategies for Green Hydrogen, Green Ammonia, and Green
Methanol in Transportation,” Renew. Energy, 246, 122904(2025).
186. Kurata, O., Iki, N., Matsunuma, T., Inoue, T., Tsujimura, T.,
Furutani, H., Kobayashi, H. and Hayakawa, A., “Performances
and Emission Characteristics of NH3–Air and NH3CH4–Air
Combustion Gas-Turbine Power Generations,” Proceedings of
the Combustion Institute, 36, 3351-3359(2017).
187. Lewandowski, M. T., Pedersen, K. A. and Løvås, T., “Evaluation
of Classical MILD Combustion Criteria for Binary Blends of
Ammonia, Methane and Hydrogen,” Int. J. Hydrogen Energy,
60, 566-580(2024).
188. Kim, Y. H., Her, A.-Y., Jeong, M. H., Kim, B.-K., Hong, S.-J.,
Shin, D.-H., Kim, J.-S., Ko, Y.-G., Choi, D., Hong, M.-K. and
Jang, Y., “Clinical Outcomes at 2 Years Between Beta-Blockade
with ACE Inhibitors or ARBs in Patients with AMI Who
Underwent Successful PCI with DES: A Retrospective Analysis
of 23,978 Patients in the Korea AMI Registry,” American
Journal of Cardiovascular Drugs, 19, 403-414(2019).
189. Kim, G., Song, Y., Gu, B. and Park, K., “Techno-Economic Analysis
and Environmental Impact Assessment of a Green Ammonia
Synthesis Process Under Various Ammonia Liquefaction Scenarios,”
Korean Chemical Engineering Research, 62, 163-172
(2024).
190. Kim, J. Y. and Yeo, B. C., “Recent Research Trends of Exploring
Catalysts for Ammonia Synthesis and Decomposition,” Korean
Chemical Engineering Research, 61, 487-495(2023).
191. Yun, K. H. and Shin, C. H., “Synthesis, Characterization and
Ammonia Decomposition Reaction Activity of Vanadium Oxynitride
Obtained from the Reduction/Nitridation of Vanadium
Oxide,” Korean Chemical Engineering Research, 60, 620-629
(2022).
192. Kim, A. and Lim, H., “Economics and Sustainability of Introducing
Clean Hydrogen from Australia in the Republic of Korea,”
Korean Journal of Chemical Engineering, 41, 2525-2539(2024).
193. Bianchi, F. R., Risso, R., Cardona, L., Bove, D., Cannizzaro, F.,
Bonardi, L., Palmisani, E. and Bosio, B., “Feasibility Analysis
of E-Hydrogen, E-Ammonia and E-Methanol Synthesis Compared
with Methane to Fuel Production,” Fuel, 384, 133938(2025).
194. Nasseriyan, P., Jafari, S., Khajehpour, H. and Edalati, S., “Toward
a Green Steel Production Powered by a Hybrid Renewable
Energy System: Techno-Economic and Environmental Assessment,”
Energy Convers. Manag., 332, 119716(2025).
195. Trinca, A., Vilardi, G. and Verdone, N., “Towards Carbon Neutrality:
The Ammonia Approach to Green Steel,” Energy Convers.
Manag., 326, 119482(2025).
196. Zahari, T. N. and McLellan, B., “Adoption of Hydrogen-Based
Steel Production Under Uncertain Domestic Hydrogen Availability:
An Indonesian Case Study,” Int. J. Hydrogen Energy,
97, 549-570(2025).
197. Murtaza, G., Najam, T., Khan, N. A., Sher, M., Aslam, M. K.,
Shaaban, I. A., Nazir, M. A., Sohail, M. and Shah, S. S. A., “Polyoxometalates
Based Transition Metal Sulfide Composites for
Hydrodesulfurization and Hydrogen Evolution Reaction,” Int.
J. Hydrogen Energy, 98, 527-541(2025).
198. Liu, W., Wan, Y., Xiong, Y. and Gao, P., “Green Hydrogen Standard
in China: Standard and Evaluation of Low-Carbon Hydrogen,
Clean Hydrogen, and Renewable Hydrogen,” Int. J. Hydrogen
Energy, 47, 24584-24591(2022).
199. Dalena, F., Senatore, A., Marino, A., Gordano, A., Basile, M. and
Basile, A., “Methanol Production and Applications: An Overview,”
Methanol: Science and Engineering, 3-28(2018).
200. Nemmour, A., Inayat, A., Janajreh, I. and Ghenai, C., “Green
Hydrogen-Based E-Fuels (E-Methane, E-Methanol, E-Ammonia)
to Support Clean Energy Transition: A Literature Review,”
Int. J. Hydrogen Energy, 48, 29011-29033(2023).
201. Abdollahipour, A. and Sayyaadi, H., “Optimal Design of a Hybrid
Power Generation System Based on Integrating PEM Fuel Cell
and PEM Electrolyzer as a Moderator for Micro-Renewable
Energy Systems,” Energy, 260, 124944(2022).
202. Schiedeck, M., Nakashima, R. N. and Frandsen, H. L., “Heat
Integration and Part-Load Performance of an SOEC-Coupled
Haber–Bosch Process,” Int. J. Hydrogen Energy, 116, 242-256
(2025).
203. Lee, Y. H., Kang, H., Kim, S., Yang, G., Yang, S., Oh, J. H. and
Choi, S., “Structural Transformation of Solid Carbons Produced
from the Methane Pyrolysis Process for Turquoise Hydrogen
Production,” Int. J. Hydrogen Energy, 141, 1019-1028(2025).

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로