Articles & Issues
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received July 23, 2025
Revised August 20, 2025
Accepted August 21, 2025
Available online September 2, 2025
- Acknowledgements
- 이 연구는 국립금오공과대학교 대학 연구과제비로 지원되었음 (2024-2026).
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Latest issues
은 나노와이어를 활용한 신축성 바이오전극 개발
Fabrication of Stretchable Bioelectrodes Using Silver Nanowires
https://doi.org/10.9713/kcer.2025.63.4.105137
Download PDF
Abstract
최근 다양한 생체 신호의 측정을 위해 생체에 부착 또는 삽입되는 바이오전극이 활발히 개발 및 활용되고 있다. 기
존에 상용화되어 널리 사용되던 금속 기반의 전극은 우수한 전기 전도성과 가공성을 가지고 있으나, 높은 기계적 강성
으로 인해 생체조직과의 기계적 부정합이 발생하여 바이오전극으로서의 활용이 제약된다. 생체조직에서 발생하는 전
기생리학적 신호를 정확하게 기록하고 효과적인 전기자극을 전달하기 위해서는 전극과 생체조직의 밀착성을 극대화하
여야 한다. 전극과 생체조직의 밀착이 불충분하면 전극과 조직 사이의 공기층이 전기적 절연층으로 작용하여 신호의
크기를 감소시키고 각종 노이즈의 발생을 초래한다. 이를 해결하기 위해 다양한 연성의 전도성 전자재료가 개발되고
있으며, 신축성 나노복합체는 높은 전기전도성과 우수한 신축성을 동시에 제공하여 바이오전극의 유망한 소재로 각광
받고 있다. 특히 은나노와이어 기반 나노복합체는 은의 탁월한 전기전도성과 높은 종횡비 특성 덕분에 바이오전극 소
재로서 이상적인 후보로 평가받고 있다. 나노복합체의 전도성과 신축성을 향상하기 위해서는 고분자 매트릭스 내에서
의 조밀하고 균일한 전도성 네트워크의 형성이 필수적이며, 이는 필러로 사용되는 은나노와이어의 구조를 정밀하게 조
절함으로써 가능하다. 본 연구에서는 은나노와이어의 합성 메커니즘을 체계적으로 분석하고 합성 조건을 최적화하여
나노복합체 제작에 가장 적합한 나노와이어를 제조하였다.
Bioelectrodes that are attachable or implantable into biological tissues have recently attracted considerable
attention for measuring diverse physiological signals. Although conventional metal-based electrodes exhibit excellent
electrical conductivity and ease of fabrication, their inherent mechanical rigidity limits their effectiveness as bioelectrodes.
Effective recording of electrophysiological signals and delivery of electrical stimulation necessitate intimate contact
between electrodes and biological tissues. Poor contact leads to air gaps functioning as electrical insulation, reducing
signal amplitude and introducing noise. To address these issues, soft conductive electronic materials, particularly stretchable
nanocomposites, have been extensively developed. Among these, silver nanowire-based nanocomposites have emerged
as promising bioelectrode materials due to silver's exceptional electrical conductivity and high aspect ratio. The electrical and
mechanical properties of nanocomposites critically depend on the formation of conductive networks within the polymer
matrix. This study optimizes silver nanowire synthesis conditions to produce nanowires ideal for bioelectrode fabrication,
thereby enhancing nanocomposite performance.
References
S. H., Hyeon, T. G. and Kim, D. H., “Advances in Soft Bioelectronics
for Brain Research and Clinical Neuroengineering,” Matter
3, 1923(2020).
2. Kim, H. J., Sunwoo, S. H., Koo, J. H. and Kim, D. H., “Soft
Implantable Bioelectronics for the Management of Neurological
Disorders and Cardiovascular Diseases,” Korean Journal of Chemical
Engineering 42, 2037-2068(2025).
3. Sunwoo, S. H., Ha, K. H., Lee S. K., Lu, N. S. and Kim, D. H.,
“Wearable and Implantable Soft Bioelectronics: Device Designs
and Material Strategies,” Annu. Rev. Chem. Biomol. Eng., 12, 359-
391(2021).
4. Lim, C., Hong, Y., Jung, J., Shin, Y. S., Sunwoo, S. H., Balk, S.
M., Park, O. K., Choi, S. H., Hyeon, T. G., Kim, J. H., Lee, S. K. and
Kim, D. H., “Tissue-like Skin-device Interface for Wearable Bioelectronics
by Using Ultrasoft, Mass-permeable, and Low-impedance
Hydrogels,” Sci. Adv., 7, eabd3716(2021).
5. Shin, Y., Lee, H. S., Hong, Y., Sunwoo, S. H., Park, O. K., Choi,
S. H., Kim, D. H. and Lee, S. K., “Low-impedance Tissue-device
Interface Using Homogeneously Conductive Hydrogels Chemically
Bonded to Stretchable Bioelectronics,” Sci. Adv., 10, eadi7724
(2024).
6. Park, C., Kim, M. S., Kim, H. H., Sunwoo, S. H., Jung, D. J., Choi,
M. K. and Kim, D. H., “Stretchable Conductive Nanocomposites
and Their Applications in Wearable Devices,” Appl. Phys. Rev.,
9, 021312(2022).
7. Sunwoo, S. H., Han, S. I., Park, C. S., Kim, J. H., Georgiou, J.
S., Lee, S. P., Kim, D. H. and Hyeon, T. G., “Soft Bioelectronics
for the Management of Cardiovascular Diseases,” Nat. Rev. Bioeng.,
2, 8-24(2024).
8. Park, J., Choi, S., Janardhan, A. H., Lee, S. Y., Raut, S., Soares,
J., Shin, K. S., Yang, S., Lee, C. K., Kang, K. W., Cho, H. R., Kim,
S. J., Seo, P. S., Hyun, W. J., Jung, S. M., Lee, H. J., Lee, N. H.,
Choi, S. H., Sacks, M., Lu, N., Josephson, M. E., Hyeon, T. G.,
Kim, D. H. and Hwang, H. J., “Electromechanical Cardioplasty
Using A Wrapped Elasto-conductive Epicardial Mesh,” Sci. Transl.
Med. 8, 344ra86(2017).
9. Cho, K. W., Sunwoo, S. H., Hong, Y. J., Koo, J. H., Kim, J. H.,
Baik, S., Hyeon, T. and Kim, D.-H., “Soft Bioelectronics Based
on Nanomaterials,” Chem. Rev., 122, 5068(2022).
10. Choi, S. J., Park, J. K., Hyun, W. J., Kim, J. W., Kim, J. M., Lee,
Y. B., Song, C. Y., Hwang, H. J., Kim, J. H., Hyeon, T. G. and
Kim, D. H., “Stretchable Heater Using Ligand-Exchanged Silver
Nanowire Nanocomposite for Wearable Articular Thermotherapy,”
ACS Nano, 9, 6626(2015).
11. Choi, S. J., Han, S. I., Kim, D. K., Hyeon, T. G. and Kim, D. H.,
“High-performance Stretchable Conductive Nanocomposites:
Materials, Processes, and Device Applications,” Chem. Soc. Rev.,
48, 1566(2019).
12. Pan, C. T., Yang, T. L., Hung, K. H. and Ju, S. P., “A parametric
Study on Synthesis of Ag Nanowires with High Aspect Ratio,” J.
Mater. Sci. Mater. Electron., 28, 12415(2017).
13. Amirjani, A., Marashi, P., and Fatmehsari, D., “The Effects of
Physicochemical Parameters on the Synthesis of Silver Nanowires
Via Polyol Method,” Int. Nano Lett., 4, 108(2014).
14. Wang, X. M., Chen, L., Sowada, E., Ro driguez, R. D., Sheremet,
E., Yu, C. M., Baumann, R. R. and Chen, J. J., “Ultra-Uniform and
Very Thin Ag Nanowires Synthesized via the Synergy of Cl−,
Br− a nd Fe3+ for Transparent Conductive Films,” Nanomaterials,
10, 237 (2020).
15. Peng, S., Cao, F., Jin, L., Jin, L. M., Tang, Y. K., Chen, S. Y., Wang,
W. W., Wang, D., Gan, Z. P. and Shan, C. L., “Preparation of Silver
Nanowires with High Aspect Ratio and Influence of Reaction
Conditions on the Morphology Size,” J. Nanosci. Nanotech., 18,
3012(2018).
16. Chen, T., Wang, H., Yang, H. and Guo, X., “Synthesis and Characterizing
of High Aspect Ratio Silver Nanowires by Polyol Process,”
Key Eng. Mater., 768, 75(2018).
17. Guzman, N. and Balela, M., “CuCl2-Mediated Synthesis of Silver
Nanowires for Flexible Transparent Conducting Films,” MATEC
Web Conf, 27, 03007(2015).
18. Hemmati, S., Harris, M. T., and Barkey D. P., “Polyol Silver Nanowire
Synthesis and the Outlook for a Green Process,” J. Nanomater.,
2020, 9341983(2020).
19. Coskun, S., Aksoy, B., and Unalan, H. E., “Polyol Synthesis of
Silver Nanowires: An Extensive Parametric Study,” Cryst. Growth
Des., 11, 4963-4969(2011).
20. Huang, Z., Xu, J., Zhong, Q., Liu, G., Wu, T., Lin, T. and He, P.,
“Low-temperature Polyol Synthesis of Millimeter-scale-length
Silver Nanowires Enabled by High Concentration of Fe3+ for Flexible
Transparent Heaters,” Mater. Today Chem., 30, 101569(2023).
21. Jhansi, K., Thomas, N., Neelakatan, L. and Swaminathan, P.,
“Controlling the Aspect Ratio of Silver Nanowires in the Modified
Polyol Process,” Mater. Lett., 344, 134396(2023).
22. Sunwoo, S. H., Han, S. I., Jung, D. J., Kim, M. S., Nam, S. H.,
Lee, H. J., Choi, S. J., Kang, H. J., Cho, Y. S., Yeom, D. H., Cha,
M. J., Lee, S. H., Lee, S. P., Hyeon, T. G. and Kim, D. H., “Stretchable
Low-Impedance Conductor with Ag-Au-Pt Core-Shell-Shell
Nanowires and in Situ Formed Pt Nanoparticles for Wearable and
Implantable Device,” ACS Nano, 17, 7550-7561(2023).
23. Choi, S. J., Han, S. I., Jung, D. J., Hwang, H. J., Lim, C. H., Bae,
S. C., Park, O. K., Tschabrunn, C. M., Lee, M. C., Bae, S. Y., Yu,
J. W., Ryu, J. H., Lee, S. W., Park, K. P., Kang, P. M., Lee, W. B.,
Nezafat, R., Hyeon, T. G. and Kim, D. H., “Highly Conductive,
Stretchable and Biocompatible Ag–Au Core–sheath Nanowire
Composite for Wearable and Implantable Bioelectronics,” Nat.
Nanotech., 13, 1048(2018).

