ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received June 16, 2025
Revised August 19, 2025
Accepted October 21, 2025
Available online September 11, 2025
Acknowledgements
이 논문(저서)은 인하대학교의 지원에 의하여 연구되었음.
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Latest issues

제올라이트 기반 Fischer-Tropsch 촉매 연구 동향

Advances in Fischer-Tropsch Synthesis Using Zeolite-Added Catalysts

국립한밭대학교 화학생명공학과 1인하대학교 화학공학과
Department of Chemical and Biological Engineering, Hanbat National University 1Department of Chemistry and Chemical Engineering, Inha University
chokanghee@inha.ac.kr, jeongchul@hanbat.ac.kr
Korean Chemical Engineering Research, November 2025, 63(4), 105136
https://doi.org/10.9713/kcer.2025.63.4.105136
downloadDownload PDF

Abstract

Fischer-Tropsch (FT) 합성은 CO와 H2를 이용하여 액체 연료 또는 올레핀 등 탄화수소를 생산하는 기술로, 특히 최근

탄소중립 달성을 위해 대체연료에 대한 수요가 늘면서 큰 주목을 받고 있다. 액체 연료를 효과적으로 생산하기 위해

다양한 촉매들이 연구되고 있으며, 그 중 제올라이트는 특유의 기공 구조와 산점을 활용하여 촉매 성능 향상에 기여한

다고 알려져 있다. 또한, 제올라이트의 기공 특성에 따라 생성물 분포가 결정되기도 한다. 예를 들어, 크기가 2 nm 이

하의 기공을 갖는 미세다공성 제올라이트는 형상 선택성을 제공하여 가솔린 범위의 가지형 탄화수소를 형성할 수 있

지만 물질 확산의 한계가 있다. 이러한 문제를 해결하고자 2~50 nm 크기의 메조기공을 제올라이트에 도입하는 전략

이 등장하였으며, 이를 도입한 메조 및 위계다공성 제올라이트는 물질 전달을 개선해 촉매 성능 및 공정 효율을 더욱

높일 수 있게 되었다. 따라서, 본 총설은 제올라이트 기반 FT 촉매의 연구 동향을 다루며, 제올라이트의 담지체로서의

역할을 분석하였다. 또한, 메조 및 위계다공성 제올라이트의 Si/Al 비율, 합성 방법, 금속 담지량 등이 FT 생성물 선택

도에 미치는 영향을 여러 사례들을 통해 자세히 알아보고, 향후 연구 방향에 대해 제언하고자 한다.

Fischer–Tropsch (FT) synthesis converts CO and H2 into hydrocarbons, including liquid fuels and olefins.

This process has recently gained significant attention due to the growing demand for alternative fuels in pursuit of

carbon neutrality. To efficiently produce liquid fuels, various catalysts have been investigated, among which zeolites are

known to enhance catalytic performance through their unique pore structures and acid sites. The product distribution is

governed by the pore characteristics of the zeolite. For instance, microporous zeolites with pore sizes of 2 nm or less

provide shape selectivity that enables the formation of branched hydrocarbons in the gasoline range, but they suffer from

mass-transfer limitations. To address this issue, strategies introducing mesopores of 2–50 nm into zeolites have emerged;

mesoporous and hierarchical zeolites improve mass transfer, thereby further enhancing catalytic performance and

process efficiency. Accordingly, this review surveys research trends in zeolite-based FT catalysts, analyzing the roles of

zeolites as supports. It also details, through numerous case studies, how factors such as Si/Al ratio, synthesis method,

and metal loading influence FT product selectivity, and proposes directions for future research.

References

1. Eyberg, V., Dieterich, V., Bastek, S., Dossow, M., Spliethoff, H.
and Fendt, S., “Techno-economic Assessment and Comparison
of Fischer-Tropsch and Methanol-to-Jet Processes to Produce
Sustainable Aviation Fuel via Power-to-Liquid,” Energy Convers.
Manage., 315, 118728(2024).
2. Höök, M., Fantazzini, D., Angelantoni, A. and Snowden, S., “Hydrocarbon
Liquefaction: Viability as a Peak Oil Mitigation Strategy,”
Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 372, 20120319(2014).
3. Gruber, H., Gross, P., Rauch, R., Reichhold, A., Zweiler, R., Aichernig,
C., Müller, S., Ataimisch, N. and Hofbauer, H., “Fischer-
Tropsch Products From Biomass-derived Syngas and Renewable
Hydrogen,” Biomass Convers. Biorefinery, 11(6), 2281-2292(2021).
4. Jung, W. H., Rhim, G. B., Kim, K. Y., Kim, Y. E., Youn, M. H.
and Chun, D. H., “Sustainable Naphtha Production Strategies
Based on Combined Reforming Integrated with Fischer–Tropsch
Synthesis: Decarbonization and Economic Analysis,” Energy
Convers. Manage., 342, 120099(2025).
5. Hamid Mahmoudi, M. M., Omid Doustdar, Hessam Jahangiri,
Athanasios Tsolakis, Sai Gu, Miroslaw LechWyszynski, “A Review
of Fischer Tropsch Synthesis Process, Mechanism, Surface Chemistry
and Catalyst Formulation,” Biofuels Engineering, 2(1), 11-31
(2017).
6. Martín, M. and Grossmann, I. E., “Process Optimization of FTDiesel
Production from Lignocellulosic Switchgrass,” Ind. Eng.
Chem. Res., 50(23), 13485-13499(2011).
7. Zhang, Q. H., Kang, J. C. and Wang, Y., “Development of Novel
Catalysts for Fischer-Tropsch Synthesis: Tuning the Product Selectivity,”
ChemCatChem, 2(9), 1030-1058(2010).
8. Zhang, Q. H., Deng, W. P. and Wang, Y., “Recent advances in
Understanding the Key Catalyst Factors for Fischer-Tropsch Synthesis,”
J. Energy Chem., 22(1), 27-38(2013).
9. Van der Laan, G. P. and Beenackers, A. A. C. M., “Kinetics and
Selectivity of the Fischer-Tropsch Synthesis: A Literature Review,”
Catalysis Reviews-Science and Engineering, 41(3-4), 255-318(1999).
10. Zhou, W., Cheng, K., Kang, J. C., Zhou, C., Subramanian, V.,
Zhang, Q. H. and Wang, Y., “New Horizon in C1 Chemistry: Breaking
the Selectivity Limitation in Transformation of Syngas and
Hydrogenation of CO Into Hydrocarbon Chemicals and Fuels,”
Chem. Soc. Rev., 48(12), 3193-3228(2019).
11. Kim, J. H., Rhim, G. B., Choi, N., Youn, M. H., Chun, D. H. and
Heo, S., “A Hybrid Modeling Framework for Efficient Development
of Fischer-Tropsch Kinetic Models,” J. Ind. Eng. Chem.,
118, 318-329(2023).
12. Mohanty, P., Pant, K. K., Naik, S. N., Parikh, J., Hornung, A. and
Sahu, J. N., “Synthesis of Green Fuels From Biogenic Waste
Through Thermochemical Route - The Role of Heterogeneous
Catalyst: A Review,” Renew. Sust. Energ. Rev., 38, 131-153(2014).
13. Deviana, D., Rhim, G. B., Kim, Y. E., Lee, H. S., Lee, G. W., Youn,
M. H., Kim, K. Y., Koo, K. Y., Park, J. and Chun, D. H., “Unravelling
Acidity–selectivity Relationship in the Bifunctional Process of
Fischer-Tropsch Synthesis and Catalytic Cracking,” Chem. Eng.
J., 455, 140646(2023).
14. Lee, G. W., Kim, K. Y., Rhim, G. B., Lee, H. S., Ro, Y. H., Lim,
B. Y., Youn, M. H., Lee, K. Y. and Chun, D. H., “Effect of Zn
Promoter on Precipitated Iron Catalyst for Linear Alpha Olefin
Production via High-temperature Fischer-Tropsch Synthesis: Modulating
Carbon Chemical Potential,” Fuel, 391, 134748(2025).
15. Beaumont, S. K., “Recent Developments in the Application of
Nanomaterials to Understanding Molecular Level Processes in
Cobalt Catalysed Fischer-Tropsch Synthesis,” Phys. Chem. Chem.
Phys., 16(11), 5034-5043(2014).
16. Fornasari, G., Latorretta, T. M. G., Vaccari, A., Bednarova, S., Jiru,
P. and Tvaruzkova, Z., “Fischer-Tropsch Synthesis on Zeolite
Supported Cobalt Catalysts,” Natural Gas Conversion, 61, 333-
339(1991).
17. Wan, H. J., Wu, B. S., Zhang, C. H., Xiang, H. W. and Li, Y. W.,
“Promotional Effects of Cu and K on Precipitated Iron-based
Catalysts for Fischer-Tropsch Synthesis,” J. Mol. Catal. A-Chem.,
283(1-2), 33-42(2008).
18. Gholami, Z., Gholami, F., Tisler, Z., Hubacek, J., Tomas, M., Baciak,
M. and Vakili, M., “Production of Light Olefins via Fischer-Tropsch
Process Using Iron-Based Catalysts: A Review,” Catalysts, 12(2),
174(2022).
19. Buthelezi, A. S., Tucker, C. L., Heeres, H. J., Shozi, M. L., Bovenkamp,
H. H. V. and Ntola, P., “Fischer-tropsch Synthesis Using
Promoted, Unsupported, Supported, Bimetallic and Spray-dried
Iron Catalysts: A Review,” Results Chem., 9, 101623(2024).
20. Keyvanloo, K., Mardkhe, M. K., Alam, T. M., Bartholomew, C.
H., Woodfield, B. F. and Hecker, W. C., “Supported Iron Fischer-
Tropsch Catalyst: Superior Activity and Stability Using a Thermally
Stable Silica-Doped Alumina Support,” ACS Catal., 4(4),
1071-1077(2014).
21. Choi, Y., Sim, G. D., Jung, U. H., Park, Y., Youn, M. H., Chun,
D. H., Rhim, G. B., Kim, K. Y. and Koo, K. Y., “Copper Catalysts
for CO2 Hydrogenation to CO Through Reverse Water–gas Shift
Reaction for e-fuel Production: Fundamentals, Recent Advances,
and Prospects,” Chem. Eng. J., 492, 152283(2024).
22. Yang, F., Zhao, H. F., Wang, W., Wang, L., Zhang, L., Liu, T. H.,
Sheng, J., Zhu, S., He, D. S., Lin, L. L., He, J. Q., Wang, R. M. and
Li, Y., “Atomic Origins of the Strong Metal-support Interaction
in Silica Supported Catalysts,” Chem. Sci., 12(38), 12651-12660
(2021).
23. Scherzer, J. and Fort, D., “Zeolite-Supported Metal-Catalysts for
Fischer-Tropsch Reactions.1. A New Preparation Method,” J.
Catal., 71(1), 111-118(1981).
24. Kim, Y. E., Jung, U. H., Song, D. H., Im, H. B., Lee, T. H., Chun,
D. H., Youn, M. H., Lee, K. B. and Koo, K. Y., “Dual-bed Catalytic
System Comprising Al2O3 and Ba/Al2O3 with Enhanced 1-octene
Productivity in 1-octanol Dehydration for Linear α-olefin Production,”
J. Ind. Eng. Chem., 119, 376-385(2023).
25. Plana-Pallejà, J., Abelló, S., Berrueco, C. and Montané, D., “Effect
of Zeolite Acidity and Mesoporosity on the Activity of Fischer-
Tropsch Fe/ZSM-5 Bifunctional Catalysts,” Appl. Catal. A-Gen.,
515, 126-135(2016).
26. Jung, W. H., Rhim, G. B., Kim, K. Y., Youn, M. H., Chun, D. H.
and Lee, J., “Comprehensive Analysis of Syngas-derived Fischer–
Tropsch Synthesis Using Iron-based Catalysts with Varied Acidities,”
Chem. Eng. J., 484, 149408(2024).
27. Li, X. H., Asami, K., Luo, M. F., Michiki, K., Tsubaki, N. and
Fujimoto, K., “Direct Synthesis of Middle Paraffins From Synthesis
Gas,” Catal. Today, 84(1-2), 59-65(2003).
28. Tsubaki, N., Yoneyama, Y., Michiki, K. and Fujimoto, K., “Threecomponent
Hybrid Catalyst for Direct Synthesis of Isoparaffin
via Modified Fischer-Tropsch Synthesis,” Catal. Commun., 4(3),
108-111(2003).
29. Fujimoto, K., “Catalyst Design Based on Spillover Theory,” Stud.
Surf. Sci. Catal., 77, 9-16(1993).
30. Yoneyama, Y., He, J. J., Morii, Y., Azuma, S. and Tsubaki, N.,
“Direct Synthesis of Isoparaffin by Modified Fischer-Tropsch
Synthesis Using Hybrid Catalyst of Iron Catalyst and Zeolite,”
Catal. Today, 104(1), 37-40(2005).
31. Martínez, A., Rollán, J., Arribas, M. A., Cerqueira, H. S., Costa,
A. F. and S-Aguiar, E. F., “A Detailed Study of the Activity and
Deactivation of Zeolites in Hybrid Co/SiO2-zeolite Fischer-Tropsch
Catalysts,” J. Catal., 249(2), 162-173(2007).
32. Zhang, Y. L. and Lin, X. Z., “Hierarchical Porous ZSM-5-promoted
FeSiMn Catalyst for Gasoline Selectivity Fischer-Tropsch Synthesis:
Effect of Acid Sites,” New J. Chem., 47(14), 6943-6950(2023).
33. Li, X. G., Liu, C., Sun, J., Xian, H., Tan, Y. S., Jiang, Z., Taguchi,
A., Inoue, M., Yoneyama, Y., Abe, T. and Tsubaki, N., “Tuning Interactions
Between Zeolite and Supported Metal by Physical-sputtering
to Achieve Higher Catalytic Performances,” Sci. Rep., 3,
2813(2013).
34. Li, X. G., He, J. J., Meng, M., Yoneyama, Y. and Tsubaki, N., “Onestep
Synthesis of H-β Zeolite-enwrapped Co/Al2O3 Fischer-Tropsch
Catalyst with High Spatial Selectivity,” J. Catal., 265(1), 26-34
(2009).
35. Huang, X., Hou, B., Wang, J. G., Li, D. B., Jia, L. T., Chen, J. G.
and Sun, Y. H., “CoZr/H-ZSM-5 Hybrid Catalysts for Synthesis
of Gasoline-range Isoparaffins From Syngas,” Appl. Catal. A-Gen.,
408(1-2), 38-46(2011).
36. Qi, H. C., Xing, C., Huang, W. G., Li, M. Q., Jiang, Y. J., Sun,
X., Liu, H. Y., Lu, P., Chen, J. A. and Chen, S. Y., “Design of a
Hierarchical Co@ZSM-5/SiC Capsule Catalyst for Direct Conversion
of Syngas to Middle Olefin,” Microporous Mesoporous
Mater., 343, 112134(2022).
37. Bouchy, C., Hastoy, G., Guillon, E. and Martens, J. A., “Fischer-Tropsch
Waxes Upgrading Hydrocracking and Selective Hydroisomerization,”
Oil Gas Sci. Technol., 64(1), 91-112(2009).
38. Li, X., Chen, Y., Liu, S. Z., Zhao, N., Jiang, X. N., Su, M. and
Li, Z. H., “Enhanced Gasoline Selectivity Through Fischer-Tropsch
Synthesis on a Bifunctional Catalyst: Effects of Active Sites
Proximity and Reaction Temperature,” Chem. Eng. J., 416, 129180
(2021).
39. Zhang, Q., Cheng, K., Kang, J., Deng, W. and Wang, Y., “Fischer-
Tropsch Catalysts for the Production of Hydrocarbon Fuels with
High Selectivity,” ChemSusChem, 7(5), 1251-1264(2014).
40. Sineva, L. V., Gorokhova, E. O., Gryaznov, K. O., Ermolaev, I.
S. and Mordkovich, V. Z., “Zeolites as a Tool for Intensification
of Mass Transfer on the Surface of a Cobalt Fischer-Tropsch Synthesis
Catalyst,” Catal. Today, 378, 140-148(2021).
41. Pan, X. L., Jiao, F., Miao, D. Y. and Bao, X. H., “Oxide-Zeolite-
Based Composite Catalyst Concept That Enables Syngas Chemistry
beyond Fischer-Tropsch Synthesis,” Chem. Rev., 121(11), 6588-
6609(2021).
42. Kang, S. H., Ryu, J. H., Kim, J. H., Prasad, P. S., Bae, J. W., Cheon,
J. Y. and Jun, K. W., “ZSM-5 Supported Cobalt Catalyst for the
Direct Production of Gasoline Range Hydrocarbons by Fischer-
Tropsch Synthesis,” Catal. Lett., 141(10), 1464-1471(2011).
43. Yao, M., Yao, N., Liu, B., Li, S., Xu, L. J. and Li, X. N., “Effect
of SiO2/Al2O3 Ratio on the Activities of CoRu/ZSM-5 Fischer-
Tropsch Synthesis Catalysts,” Catal. Sci. Technol., 5(5), 2821-
2828(2015).
44. Carvalho, A., Marinova, M., Batalha, N., Marcilio, N. R., Khodakov,
A. Y. and Ordomsky, V. V., “Design of Nanocomposites
with Cobalt Encapsulated in the Zeolite Micropores for Selective
Synthesis of Isoparaffins in Fischer-Tropsch Reaction,” Catal.
Sci. Technol., 7(21), 5019-5027(2017).
45. Jo, C., Jung, J. and Ryoo, R., “Mesopore Expansion of Surfactant-
directed Nanomorphic Zeolites with Trimethylbenzene,”
Microporous Mesoporous Mater., 194, 83-89(2014).
46. Lee, D. W., Jin, M. H., Park, J. H., Lee, Y. J., Choi, Y. C., Kim, Y. E.,
Koo, K. Y., Park, J. C., Youn, M. H. and Chun, D. H., “Production
of Linear Alpha Olefin 1-octene Through 1-octanol Dehydration
in Packed-bed Membrane Reactors with Large Mesoporous Membranes
(PMRL) for Remarkable Improvement in 1-octanol Conversion
and 1-octene Yield,” Fuel, 333, 126367(2023).
47. Hartmann, M., “Hierarchical Zeolites: A Proven Strategy to Combine
Shape Selectivity with Efficient Mass Transport,” Angew.
Chem.-Int. Edit., 43(44), 5880-5882(2004).
48. Pérez-Ramírez, J., Christensen, C. H., Egeblad, K., Christensen,
C. H. and Groen, J. C., “Hierarchical Zeolites: Enhanced Utilisation
of Microporous Crystals in Catalysis by Advances in Materials
Design,” Chem. Soc. Rev., 37(11), 2530-2542(2008).
49. Lopez-Orozco, S., Inayat, A., Schwab, A., Selvam, T. and Schwieger,
W., “Zeolitic Materials with Hierarchical Porous Structures,” Adv.
Mater., 23(22-23), 2602-2615(2011).
50. Wang, Y. L., Li, X. L., Ma, H., Zhang, H., Jiang, Y., Wang, H.,
Li, Z. and Wu, J. H., “Effect of the Desilication of H-ZSM-5 by
Alkali Treatment on the Catalytic Performance in Fischer-Tropsch
Synthesis,” React. Kinet. Mech. Catal., 120(2), 775-790(2017).
51. Ke Zhang, M. L. O., “Innovations in Hierarchical Zeolite Synthesis,”
Catal. Today, 264, 3-15(2016).
52. Jeong, S., Lim, J. J., Yoo, J., Yun, Y. S., Park, S. J., Lee, J. W., Kim,
K., Chae, H. S., Lee, Y. J. and Han, S. J., “Comprehensive Study
of Cobalt-based Hybrid Catalysts for Selective Liquid Fuel Production
via Fischer-Tropsch Synthesis,” Fuel, 404, 136159(2026).
53. Baranak, M., Gürünlü, B., Sarioglan, A., Ataç, Ö. and Atakül, H.,
“Low Acidity ZSM-5 Supported Iron Catalysts for Fischer-Tropsch
Synthesis,” Catal. Today, 207, 57-64(2013).
54. Chalupka-Spiewak, K. A., Gurgul, J., Grams, J., Mierczynski, P.,
Maniukiewicz, W., Szynkowska-Józwik, M. I., Latka, K., Rynkowski,
J. and Dzwigaj, S., “The Catalytic Activity of Bimetallic
FeCoBEA Zeolite Catalysts in Fischer-Tropsch Synthesis - The
Role of Cobalt in Framework Position of Dealuminated SiBEA
Zeolite,” Appl. Catal. O-Open, 192, 206935(2024).
55. Xing, C., Yang, G. H., Wu, M. B., Yang, R. Q., Tan, L., Zhu, P.
F., Wei, Q. H., Li, J., Mao, J. W., Yoneyama, Y. and Tsubaki, N.,
“Hierarchical Zeolite Y Supported Cobalt Bifunctional Catalyst
for Facilely Tuning the Product Distribution of Fischer-Tropsch
Synthesis,” Fuel, 148, 48-57(2015).
56. Kim, J. C., Lee, S., Cho, K., Na, K., Lee, C. and Ryoo, R., “Mesoporous
MFI Zeolite Nanosponge Supporting Cobalt Nanoparticles
as a Fischer-Tropsch Catalyst with High Yield of Branched
Hydrocarbons in the Gasoline Range,” ACS Catal., 4(11), 3919-
3927(2014).
57. Choi, M., Cho, H. S., Srivastava, R., Venkatesan, C., Choi, D. H.
and Ryoo, R., “Amphiphilic Organosilane-directed Synthesis of
Crystalline Zeolite with Tunable Mesoporosity,” Nat. Mater., 5(9),
718-723(2006).
58. Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O. and Ryoo,
R., “Stable Single-unit-cell Nanosheets of Zeolite MFI as Active
and Long-lived Catalysts,” Nature, 461(7261), 246-249(2009).
59. Na, K., Park, W., Seo, Y. and Ryoo, R., “Disordered Assembly
of MFI Zeolite Nanosheets with a Large Volume of Intersheet
Mesopores,” Chem. Mater., 23(5), 1273-1279(2011).
60. Vannice, M. A., “Catalytic Synthesis of Hydrocarbons from H2-
CO Mixtures over Group VIII Metals: V. Catalytic Behavior of
Silica-Supported Metals,” J. Catal., 50(2), 228-236(1977).
61. Kim, K. J., Kim, K. Y., Rhim, G. B., Youn, M. H., Lee, Y. L.,
Chun, D. H. and Roh, H. S., “Nano-catalysts for Gas to Liquids:
A Concise Review,” Chem. Eng. J., 468, 143632(2023).
62. Yin, D. H., Li, W. H., Yang, W. S., Xiang, H. W., Sun, Y. H., Zhong,
B. and Peng, S. Y., “Mesoporous HMS Molecular Sieves Supported
Cobalt Catalysts for Fischer-Tropsch Synthesis,” Microporous
Mesoporous Mater., 47(1), 15-24(2001).
63. Panpranot, J., Goodwin, J. G. and Sayari, A., “Synthesis and
Characteristics of MCM-41 Supported CoRu Catalysts,” Catal.
Today, 77(3), 269-284(2002).
64. Espinosa, G., Domínguez, J. M., Morales-Pacheco, P., Tobon, A.,
Aguilar, M. and Benítez, J., “Catalytic Behavior of Co/(Nanoβ-
Zeolite) Bifunctional Catalysts for Fischer-Tropsch Reactions,”
Catal. Today, 166(1), 47-52(2011).
65. J. Jimmy, E., Rastini, K. and Santoso, A., “Fischer-Tropsch Synthesis:
Effect of Temperature and Iron-cobalt Ratio in Fe-Co/meso-
HZSM-5 Catalyst on Liquid Product Distribution,” Eureka: PE,
2, 13-20(2024).
66. Jeong, W., Kim, J., Cho, K. and Kim, J. C., “Fischer-Tropsch
Synthesis Performance of Iron Nanocatalyst Confined in Mesopores
of MFI Zeolite Nanosponge,” Fuel, 381, 133673(2025).
67. Kim, J. C., Ryoo, R., Opanasenko, M. V., Shamzhy, M. V. and Cejka,
J., “Mesoporous MFI Zeolite Nanosponge as a High-Performance
Catalyst in the Pechmann Condensation Reaction,” ACS Catal.,
5(4), 2596-2604(2015).
68. de Smit, E. and Weckhuysen, B. M., “The Renaissance of Iron-based
Fischer-Tropsch Synthesis: on the Multifaceted Catalyst Deactivation
Behaviour,” Chem. Soc. Rev., 37(12), 2758-2781(2008).
69. Sartipi, S., Parashar, K., Valero-Romero, M. J., Santos, V. P., van
der Linden, B., Makkee, M., Kapteijn, F. and Gascon, J., “Hierarchical
H-ZSM-5-supported Cobalt for the Direct Synthesis of
Gasoline-range Hydrocarbons from Syngas: Advantages, Limitations,
and Mechanistic Insight,” J. Catal., 305, 179-190(2013).
70. Kim, J., Jeong, J., Cho, K., Jeong, W., Park, Y., Cho, K. and Kim, J.
C., “Zeolite Beta Nanosponge Supporting Uniform Sized Cobalt
Nanoparticles, Exhibiting High Yield of Branched Hydrocarbons in
Gasoline Range in Fischer-Tropsch Synthesis,” Fuel, 396, 135279
(2025).

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로