ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 19, 2024
Revised March 12, 2024
Accepted March 13, 2024
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Latest issues

프러시안 블루가 함입된 자성 야누스 미세 흡착제 개발 및 이를 이용한 폐수 내 세슘정화

Development of Prussian Blue-laden Magnetic Janus Micro-adsorbents for Remediation of Cs+ Ions in Wastewater

상명대학교 그린화학공학과 1상명대학교 미래환경에너지연구소
Department of Green Chemical Engineering, Sangmyung University 1Future Environment and Energy Research Institute, Sangmyung University
Korean Chemical Engineering Research, May 2024, 62(2), 181-190(10), https://doi.org/10.9713/kcer.2024.62.2.181 Epub 1 May 2024
downloadDownload PDF

Abstract

본 연구는 자성 야누스 미세 흡착제를 합성하기 위해 쉽고 빠르며 대량생산이 가능한 원심력 기반 미세유체 반응기 를 개발하였다. 두 개의 정렬된 주사침과 원심분리 튜브로 구성된 다중 미세노즐을 사용함으로써 높은 균일도를 갖는 프러시안 블루와 자성 나노입자의 함입이 이루어진 미세 흡착제(PB-MNP-MAs)를 합성하였다. 등온흡착과 흡착속도 실험을 통해 다공성 구조 및 프러시안 블루 나노입자의 넓은 비표면적을 갖는 미세 흡착제의 향상된 세슘 흡착 성능 을 증명하였으며 이를 통해 10분 이내의 빠른 흡착을 유도할 수 있다. 흡착 공정 후, 외부 자기장 도입을 통해 세슘 수 용액 내에서 합성된 PB-MNP-MAs를 성공적으로 회수하였다. 따라서 본 연구결과를 바탕으로 생물 및 환경 제염 분 야에서 기능성 흡착제 발전을 위한 새로운 방향성을 제공해 줄 것으로 기대한다.

Here, we develop a centrifugal microfluidic reactor with simple, fast, and high-throughput manner for the generation of magnetic Janus micro-adsorbents (MAs). By using the multi-micronozzle consisting of two separate aligned needles and centrifugal tubes, we have synthesized highly monodispersed Prussian blue- and magnetic nanoparticle-laden micro-adsorbents (PB-MNP-MAs). The enhanced cesium (Cs+ ) adsorption was demonstrated by conducting the adsorption isotherm and kinetics experiment which can be contributed to the porous nature of the Ca-alginate networks with a high surface area of embedded PB nanoparticles, resulting to perform rapid adsorption activity within 10 min. After Cs+ adsorption process, the as-synthesized PB-MNP-MAs were successfully harvested by introducing the external magnetic fields. Therefore, we believe that our findings can be provided new direction towards the development of advanced functional adsorbents in biological and environmental fields.

References

1. Rashid, R., Shafiq, I., Akhter, P., Muhammad, J. I. and Hussain, M.,
“A State-of-the-art Review on Wastewater Treatment Techniques:
the Effectiveness of Adsorption Method,” Environ. Sci. Pollut.,
28, 9050-9066(2021).
2. Choi, W. S. and Lee, H. J., “Nanostructured Materials for Water
Purification: Adsorption of Heavy Metal Ions and Organic Dyes,”
Polymers, 14, 2183(2022).
3. Tanaka, S., Adati, T., Takahashi, T., Fujiwara, K. and Takahashi, S.,
“Concentrations and Biological Half-life of Radioactive Cesium
in Epigeic Earthworms After the Fukushima Dai-ichi Nuclear Power
Plant Accident,” J. Environ. Radioact., 192, 227-232(2018).
4. Hirose, K., “2011 Fukushima Dai-ichi Nuclear Power Plant Accident: Summary of Regional Radioactive Deposition Monitoring
Results,” J. Environ. Radioact., 111, 13-17(2012).
5. Onda, Y., Taniguchi, K., Yoshimura, K., Kato, H., Takahashi, J.,
Wakiyama, Y., Coppin, F. and Smith, H., “Radionuclides from the
Fukushima Daiichi Nuclear Power Plant in Terrestrial Systems,”
Nat. Rev. Earth Environ., 1, 644-660(2020).
6. Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. and Alvarez, S., “Covalent
Radii Revisited,” Dalton Trans., 21, 2832-2838(2008).
7. Ezugbe, E. O. and Rathilal, S., “Membrane Technologies in
Wastewater Treatment: A Review,” Membranes, 10, 89(2020).
8. Zhang, L., Lv, P., He, Y., Li, S., Chen, K. and Yin, S., “Purification of
Chlorine-containing Wastewater Using Solvent Extraction,” J.
Clean. Prod., 273, 122863(2020).
9. Yuan, Y., Yin, W. X., Huang, Y. T., Feng, A. Q., Chen, T. M.,
Qiao, L., Cheng, H. Y., Liu, W. Z., Li, Z. X., Ding, C., Chen, F.
and Wang, A., “Intermittent Electric Field Stimulated Reductionoxidation Coupled Process for Enhanced Azo Dye Biodegradation,” Chem. Eng. J., 451, 138732(2023).
10. Pohl, A., “Removal of Heavy Metal Ions from Water and Wastewaters by Sulfur-Containing Precipitation Agents,” Water Air
Soil Pollut., 231, 503(2020).
11. Dixit, F., Dutta, R., Barbeau, B., Berube, P. and Mohseni, M.,
“PFAS Removal by Ion Exchange Resins: A Review,” Chemosphere, 272, 129777(2021).
12. Khorram, A. G., Fallah, N., Nasernejad, B., Afsham, N., Esmaelzadeh, M. and Vatanpour, V., “Electrochemical-based Processe for Produced Water and Oily Wastewater Treatment: A review,”
Chemosphere, 338, 139565(2023).
13. Kim, H., Kim, M., Kim, W., Lee, W. and Kim, S., “Photocatalytic
Enhancement of Cesium Removal by Prussian Blue-deposited
TiO2”, J. Hazard. Mater., 357, 449-456(2018).
14. Darban, Z., Shahabuddin, S., Gaur, R., Ahmad, I. and Sridewi,
N., “Hydrogel-Based Adsorbent Material for the Effective Removal
of Heavy Metals from Wastewater: A Comprehensive Review,”
Gels, 8, 263(2022).
15. Chai, W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed,
Z., Banat, F., Ho, S.H . and Show, P. L., “A Review on Conventional and Novel Materials Towards Heavy Metal Adsorption in
Wastewater Treatment Application,” J. Clean. Prod., 296, 126589
(2021).
16. Pila, M. N., Colasurdo, D. D., Simonetti, S. I., Dodero, G. A.,
Allegretti, P. E., Ruiz, D. L. and Laurella, S. L., “Adsorption of Three
Chlorinated Herbicides on Two Activated Carbons: An Example of
the Effect of Surface Charge, Pore Diameter and Molecular Size
on the Adsorption Process,” Korean Chem. Eng. Res., 61, 97-108
(2023).
17. Oktavian, R., Poerwadi, B., Pardede, K. and Aulia, Z. R., “Comparative Study on Convective and Microwave-Assisted Heating
of Zeolite-Monoethanolamine Adsorbent Impregnation Process
for CO2 Adsorption,” Korean Chem. Eng. Res., 59, 260-268(2021).
18. Sung, S., Lee, M. and Cho, Y. S., “Removal of Anionic Dyes
and Heavy Metal Ions Using Silica Nanospheres or Porous Silica
Micro-particles Modified with Various Coupling Agents,” Korean
Chem. Eng. Res., 59, 596-610(2021).
19. Pereira, A. G., Rodrigues, F. H., Paulino, A. T., Martins, A. F.
and Fajardo, A. R., “Recent Advances on Composite Hydrogels
Designed for the Remediation of Dye-contaminated Water and
Wastewater: A Review,” J. Clean. Prod., 284, 124703(2021).
20. Radoor, S., Karayil, J., Jayakumar, A., Kandel, D. R., Kim, J. T.,
Siengchin, S. and Lee, J., “Recent Advances in Cellulose-and Alginate-Based Hydrogels for Water and Wastewater Treatment: A
Review,” Carbohydr. Polym., 323, 121339(2023).
21. Xu, H., Liu, B. and Zhang, M., “Preparation and Application of
Monodisperse, Highly Cross-linked, and Porous Polystyrene
Microspheres for Dye Removal,” Colloids Surf. A, 650, 129596
(2022).
22. Fila, D., Hubicki, Z. and Kołodyńska, D., “Applicability of New
Sustainable and Efficient Alginate-based Composites for Critical
Raw Materials Recovery: General Composites Fabrication Optimization and Adsorption Performance Evaluation,” J. Chem. Eng.,
446, 137245(2022).
23. Berg, J. and Seiffert, S., “Composite Hydrogels Based on Calcium
Alginate and Polyethyleneimine for Wastewater Treatment,” J.
Polym. Sci., 61, 2203-2222(2023).
24. Elella, M. H. A., Aamer, N., Mohamed, Y. M., El Nazer, H. A.
and Mohamed, R. R., “Innovation of High-performance Adsorbent
Based on Modified Gelatin for Wastewater Treatment,” Polym.
Bull., 23, 1-17(2022).
25. Berg, J. and Seiffert, S., “Composite Hydrogels Based on Calcium
Alginate and Polyethyleneimine for Wastewater Treatment,” J.
Polym. Sci., 61, 2203-2222(2023).
26. Ali, A., Khan, S., Garg, U., Luqman, M., Bhagwath, S. S. and
Azim, Y., “Chitosan-based Hydrogel System for Efficient Removal
of Cu[II] and Sustainable Utilization of Spent Adsorbent as a
Catalyst for Environmental Applications,” Int. J. Biol. Macromol.,
247, 125805(2023).
27. Guilherme, M. R., Reis, A. V., Paulino, A. T., Moia, T. A., Mattoso,
L. H. and Tambourgi, E. B., “Pectin-based Polymer Hydrogel as
a Carrier for Release of Agricultural Nutrients and Removal of
Heavy Metals from Wastewater,” J. Appl. Polym. Sci., 117, 3146-
3154(2010).
28. Nemati, Y., Zahedi, P., Baghdadi, M. and Ramezani, S., “Microfluidics Combined with Ionic Gelation Method for Production of
Nanoparticles Based on Thiol-functionalized Chitosan to Adsorb
Hg(II) from Aqueous Solutions,” J. Environ. Manage., 238, 166-
177(2019).
29. da Silva Alves, D. C., Healy, B., Pinto, L. A. D. A., Cadaval Jr,
T. R. S. A. and Breslin, C. B., “Recent Developments in Chitosanbased Adsorbents for the Removal of Pollutants from Aqueous
Environments,” Molecules, 26, 594(2021).
30. Beck, A., Obst, F., Busek, M., Grünzner, S., Mehner, P. J., Paschew,
G., Appelhans, D., Voit, B. and Richter, A., “Hydrogel Patterns
in Microfluidic Devices by Do-it-yourself UV-photolithography
Suitable for Very Large-scale Integration,” Micromachines, 11,
479(2020).
31. Chen, Z., Lv, Z., Zhang, Z., Weitz, D. A., Zhang, H., Zhang, Y.
and Cui, W., “Advanced Microfluidic Devices for Fabricating
Multi-Structural Hydrogel Microsphere,” Exploration, 1, 20210036
(2021).
32. Roy Barman, S., Gavit, P., Chowdhury, S., Chatterjee, K. and
Nain, A., “3D-Printed Materials for Wastewater Treatment,” JACS
Au, 3, 2930-2947(2023).
33. Minjun, C., Aluunmani, R., Bolognesi, G. and Vladisavljević, G.
T., “Facile Microfluidic Fabrication of Biocompatible Hydrogel
Microspheres in a Novel Microfluidic Device,” Molecules, 27,
4013(2022).
34. Chen, M., Farooqi, Z. H., Bolognesi, G. and Vladisavljević, G. T.,
“Microfluidic Fabrication of Monodisperse and Recyclable TiO2-
poly(ethylene glycol) Diacrylate Hybrid Microgels for Removal
of Methylene Blue from Aqueous Medium,” Langmuir, 39, 18784-
18796(2023).
35. Li, D., Zhang, H., Zhang, L., Wang, P., Xu, H. and Xuan, J., “Rapid
Synthesis of Porous Graphene Microspheres Through a Threedimensionally Printed Inkjet Nozzle for Selective Pollutant Removal
from Water,” ACS omega, 4, 20509-20518(2019).
36. Kang, S.-M., Lee, G. W. and Huh, Y. S., “Centrifugal Force-Driven
Modular Micronozzle System: Generation of Engineered Alginate
Microspheres,” Sci. Rep., 9, 12776(2019).
37. Jillavenkatesa, A., Dapkunas, S. J. and Lum, L. H., “Particle
Size Characterization,” National Institute of Standards and Technology: Gaithersburg, MD, USA, 149(2001).
38. Maeda, K., Onoe, H., Takinoue, M. and Takeuchi, S., “Controlled
Synthesis of 3D Multi-compartmental Particles with Centrifugebased Microdroplet Formation from a Multi-barrelled Capillary,”
Adv. Mater., 24, 1340-1346(2012).
39. Tian, K., Wang, X. X., Yu, Z. Y., Li, H. Y. and Guo, X., “Hierarchical and Hollow Fe2O3 Nanoboxes Derived from Metal-Organic
Frameworks with Excellent Sensitivity to H2S,” ACS Appl. Mater.
Interfaces, 9, 29669-29676(2017).
40. Rahman, S. S. U., Qureshi, M. T., Sultana, K., Rehman, W., Khan M. Y., Asif, M. H., Farooq, M. and Sultana, N., “Single Step Growth
of Iron Oxide Nanoparticles and Their Use as Glucose Biosensor,” Results Phys., 7, 4451-4456(2017).
41. Park, B., Ghoreishian, S. M., Kim, Y., Park, B. J., Kang, S.-M. and
Huh, Y. S., “Dual-Functional Micro-Adsorbents: Application for
Simultaneous Adsorption of Cesium and Strontium,” Chemosphere, 263, 128266(2021).
42. Oh, D., Kim, B., Kang, S., Kim, Y., Yoo, S., Kim, S., Chung, Y.,
Choung, S., Han, J., Jung, S., Kim, H. and Hwang, Y., “Enhanced
Immobilization of Prussian Blue Through Hydrogel Formation by
Polymerization of Acrylic Acid for Radioactive Cesium Adsorption,” Sci. Rep., 9, 16334(2019).
43. Fauzi, N. I. M., Fen, Y. W., Omar, N. A. S., Saleviter, S., Daniyal,
W. M. E. M. M., Hashim, H. S. and Nasrullah, M., “Nanostructured
Chitosan/maghemite Composites Thin Film for Potential Optical
Detection of Mercury Ion by Surface Plasmon Resonance Investigation,” Polymers, 12, 1497(2020).
44. Lee, H. K., Choi, J. W., Kim, J. H., Kim, C. R. and Choi, S. J.,
“Simultaneous Selective Removal of Cesium and Cobalt from
Water Using Calcium Alginate-zinc Ferrocyanide-Cyanex 272
Composite Beads,” Environ. Sci. Pollut. Res., 28, 42014-42023
(2021).
45. Jang, S. C., Haldorai, Y., Lee, G. W., Hwang, S. K., Han, Y. K.,
Roh, C. and Huh, Y. S., “Porous Three-dimensional Graphene
Foam/Prussian Blue Composite for Efficient Removal of Radioactive 137Cs,” Sci. Rep., 5, 17510(2015).
46. Wang, Q., Wang, N., He, S., Zhao, J., Fang, J. and Shen, W.,
“Simple Synthesis of Prussian Blue Analogues in Room Temperature Ionic Liquid Solution and Their Catalytic Application
in Epoxidation of Styrene,” Dalton Trans., 44, 12878-12883(2015).
47. Jang, J. and Lee, D. S., “Magnetic Prussian Blue Nanocomposites
for Effective Cesium Removal from Aqueous Solution,” Ind. Eng.
Chem. Res., 55, 3852-3860(2016).
48. Qin, J., Yan, L., Han, S., Yang, X., Guo, Y., Li, L. and Deng, T.,
“Tannic Acid-assisted Prussian Blue Anchoring on Membranes
for Rapid and Recyclable Removal of Cesium,” J. Water Process
Eng., 52, 103565(2023).
49. Borai, E. H., Harjula, R. and Paajanen, A., “Efficient removal of
Cesium from Low-level Radioactive Liquid Waste Using Natural
and Impregnated Zeolite Minerals,” J. Hazard. Mater., 172, 416-
422(2009).
50. Möller, T., Harjula, R., Pillinger, M., Dyer, A., Newton, J., Tusa,
E. and Araya, A., “Uptake of 85Sr, 134Cs and 57Co by Antimony
Silicates Doped with Ti4+, Nb5+, Mo6+ and W6+,” J. Mater. Chem.,
11, 1526-1532(2001).
51. Saberi, R., Nilchi, A., Rasouli Garmarodi, S. and Zarghami, R.,
“Adsorption Characteristic of 137Cs from Aqueous Solution Using
PAN-based Sodium Titanosilicate Composite,” J. Radioanal. Nucl.
Chem., 284, 461-469(2010).
52. Eun, S., Han, Y. S., Kim, H., Kim, M., Ryu, J., Park, J. H., and
Kim, S., Photoinduced Enhancement of 137Cs removal by NiFe
Prussian Blue Analogue-alginate Hydrogel,” Sep. Purif. Technol.,
312, 123376(2023).
53. Yang, X. B., Li, W., Lin, Z. Z., Liu, J. Q., Jiang, H. X., Jia, H.
and Kong, D. M., “Ultralight, Robust, and High Prussian Blueloading Polyacrylonitrile Aerogel: Preparation, Characterization
and Efficient Adsorption/removal of Cs+
,” J. Chem. Eng., 464,
142723(2023).
54. Kinniburgh, D. G., “General Purpose Adsorption Isotherms,” Environ. Sci. Technol., 20, 895-904(1986).
55. Langmuir, I., “The Adsorption of Gases on Plane Surfaces of
Glass, Mica and Platinum,” J. Am. Chem. Soc., 40, 1361-1403(1918).
56. Freundlich, H., “Over the Adsorption in the Solution,” J. Phys.
Chem., 57, 385-470(1906).
57. Ren, J., Zhu, Z., Qiu, Y., Yu, F., Ma, J. and Zhao, J., “Magnetic
Field Assisted Adsorption of Pollutants from An Aqueous Solution: A Review,” J. Hazard. Mater., 408, 124846(2021).
58. Majidnia, Z. and Idris, A., “Evaluation of Cesium Removal from
Radioactive Waste Water Using Maghemite PVA–alginate Beads,”
J. Chem. Eng., 262, 372-382(2015).
59. Cho, E., Lee, J. J., Lee, B. S., Lee, K. W., Yeom, B. and Lee, T.
S., “Cesium Ion-exchange Resin Using Sodium Dodecylbenzenesulfonate for Binding to Prussian Blue,” Chemosphere, 244,
125589(2020).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로