ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Articles & Issues

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 29, 2024
Revised April 4, 2024
Accepted April 5, 2024
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Latest issues

표면 개질된 샤프심 전극의 전기화학적 특성 고찰 및 비효소적 글루코스 센서 활용

Electrochemical Characteristics of Pencil Graphite Electrode Through Surface Modification and its Application of Non-enzymatic Glucose Sensor

서경대학교
Seokyeong University
Korean Chemical Engineering Research, May 2024, 62(2), 147-152(6), https://doi.org/10.9713/kcer.2024.62.2.147 Epub 1 May 2024
downloadDownload PDF

Abstract

의료용 센서들은 대부분 일회용 제품으로, 검사·진단 비용을 줄이기 위해서는 저가의 전극 소재 개발이 무엇보다 중 요하다. 본 연구에서는 일회용 전기화학센서의 전극 소재로 pencil graphite를 도입하여 전처리 효과와 전도성 고분자 폴리아닐린(polyaniline; PANI) 및 금속 산화물 CuO NPs를 이용한 표면 개질(modification)을 통한 전기화학적 특성을 조사하고, 이를 글루코스 검출용 비효소 전기화학센서에 적용하였다. Pencil graphite electrode (PGE)의 표면 활성화를 위한 전처리는 화학적과 전기화학적으로 각각 진행되었으며, 전처리된 샘플들은 시간대전류법(CA)과 순환전압 전류법 (CV), 전기화학 임피던스(EIS) 분석법을 이용한 전기화학적 특성 조사를 통해 최종적으로 전기화학적 전처리 방법을 채택하여 CuO NPs/PANI/E-PGE를 제작하였다. 이를 적용한 비효소적 글루코스 검출용 전기화학 센서는 0.282 ~2.112 mM과 3.75423~50 mM의 선형 구간에서 각각 239.18 mA/mM×cm2 과 36.99 mA/mM×cm2 정도의 감도(sensitivity)와 17.6 μM의 검출 한계(detection limit), 글루코스에 대한 좋은 선택도(selectivity)를 보였다. 본 연구의 결과를 토대로 PGEs 를 활용한 다양한 일회용 센서 응용과 저가의 고성능 전극 소재 개발 가능성을 확인하고, 더 많은 분야에 활용할 수 있을 것으로 기대된다.

Most medical sensors are disposable products. In order to reduce inspection and diagnosis costs, it is more important to develop the inexpensive electrode materials. We fabricated the CuO NPs/PANI/E-PGE as an electrode material for disposable electrochemical sensors and applied it to a non-enzymatic glucose sensor. For surface activation of PGE, pretreatment was performed using chemical and electrochemical methods, respectively. Electrochemical properties according to the pretreatment method were analyzed through chronoamperometry (CA), cyclic voltammetry (CV) and electrochemical impedance (EIS). From these analytical results, the electrochemically pretreated PGE (E-PGE) was finally adopted. The non-enzymatic glucose sensor based on CuO NPs/PANI/E-PGE shows sensitivity of 239.18 mA/mM×cm2 (in a linear range of 0.282~2.112 mM) and 36.99 mA/mM×cm2 (3.75423~50 mM), detection limit of 17.6 μM and good selectivity. Based on the results of this study, it was confirmed that the modified PGE is a high-performance electrode material. Therefore, these electrodes can be applied to a variety of disposable sensors.

References

1. David, I. G., Buleandra, M., Popa, D. E., Cheregi, M. C., David,
V., Iorgulescu, E. E. and Tartareanu, G. O., “Recent Developments in Voltametric Analysis of Pharmaceuticals Using Disposable Pencil Graphite Electrodes,” Processes, 10, 472(2022).
2. Babu, K. J., Sheet, S., Lee, Y. S. and Kumar, G. G., “Threedimensional Dendrite Cu-Co/reduced Graphene Oxide Architectures on a Disposable Pencil Graphite Electrode as An Electrochemical Sensor for Nonenzymatic Glucose Detection,” ACS
Sustain. Chem. Eng., 6, 1909-1918(2018).
3. Purushothama, H. T., Nayaka, Y. A., Vinay, M. M., Manjunatha,
P., Yathisha, R. O. and Basavarajappa, K. V., “Pencil Graphite
Electrode as An Electrochemical Sensor for the Voltametric Determination of Chlorpromazine,” J. Sci.-Adv. Mater. Dev., 3, 161-166
(2018).
4. Annu, Sharma, S., Jain, R. and Raja, A. N., “Review-pencil Graphite Electrode: An Emerging Sensing Material,” J. Electrochem.
Soc., 167, 037501(2020).
5. Aziz, M. A. and Kawde, A. N., “Nanomolar Amperometric Sensing of Hydrogen Peroxide Using a Graphite Pencil Electrode
Modified with Palladium Nanoparticles,” Microchim. Acta, 180,
837-843(2013).
6. Srinivas, S. and Kumar, A. S., “Surface-activated Pencil Graphite
Electrode for Dopamine Sensor Applications: A Critical Review,”
Biosensors, 13, 353(2023).
7. Teepoo, S., Chumsaeng, P., Nethan, P., Prueprang, W. and Tumsae, P., “Highly Sensitive Pencil-based Renewable Biosensor for
Hydrogen Peroxide Detection with a Novel Bionanomultilayer,”
Int. J. Electrochem. Sci., 7, 4645-4656(2012).
8. Kawde, A. N., Aziz, M., Baig, N. and Temerk, Y., “A Facile
Fabricaton of Platinum Nanoparticle-modified Graphite Pencil
Electrode for Highly Sensitive Detection of Hydrogen Peroxide,” J. Electroanal. Chem., 740, 68-74(2015).
9. Shoaie, N., Daneshpour, M., Azimzadeh, M., Mahshid, S., Khoshfetrat, S. M., Jahanpeyma, F., Gholaminejad, A., Omidfar, K. and
Foruzandeh, M., “Electrochemical Sensos and Biosensors Based
on the Use of Polyaniline and Its Nanocomposites: a Review on
Recent Advances,” Microchim. Acta, 186, 465(2019).
10. Sha, R., Komori, K. and Badhulika, S., “Graphene-polyaniline
Composite Based Ultra-sensitive Electrochemical Sensor for Nonenzymatic Detection of Urea,” Electrochem. Acta, 233, 44-51(2017).
11. Pourbeyram, S. and Mehdizadeh, K., “Nonenzymatic Glucose Sensor Based on Disposable Pencil Graphite Electrode Modified by
Copper Nanoparticles,” J. Food Drug Anal., 24, 894-902(2016).
12. Kamyabi, M. A. and Hajari, N., “Low Potential and Non-enzymatic
Hydrogen Peroxide Sensor Based on Copper Oxide Nanoparticle
on Activated Pencil Graphite Electrode,” J. Braz. Chem. Soc., 28,
808-818(2017).
13. Prasertying, P., Yamkesorn, M., Chimsaard, K., Thepsuparungsikul, N., Chaneam, S., Kalcher, K. and Chaisuksant, R., “Modified Pencil Graphite Electrode as a Low-cost Glucose Sensor,”
J. Sci.-Adv. Mater. Dev., 5, 330-336(2020).
14. Heydari, H., Gholivand, M. B. and Abdolmaleki, A., “Cyclic
Voltammetry Deposition od Copper Nanostructure on MWCNTs
Modified Pencil Graphite Electrode: An Ultra-sensitive Hydrazine Sensor,” Mater. Sci. Eng. C, 66, 16-24(2016).
15. Felix, S., Chakkravarthy, B. P., Jeong, S. K. and Grace, A. N.,
“Synthesis of Pt Decorated Copper Oxide Nanoleaves and Its
Electrochemical Detection of Glucose,” J. Electrochem. Soc., 162,
H392-H396(2015).
16. Bard, A. J. and Faulkner, L. R., “Electrochemical Methods: Fundamentals and Applications,” John Wiley and Sons.,Chichester, Brisbane, Toronto(1980).
17. Kawde, A. N., Aziz, M. A., El-Zohri, M., Baig, N. and Odewunmi,
N., “Cathodized Gold Nanoparticle-modified Graphite Pencil
Electrode for Non-enzymatic Sensitive Voltametric Detection of
Glucose,” Electroanalysis, 29, 1214-1221(2017).
18. Mondal, S., Madhuri, R. and Sharma, P. K., “CuO Nanostructure Modified Pencil Electrode for Non-enzymatic Detection of
Glucose,” AIP Conf. Proc., 1832, 050011(2017).
19. Oskay, K. and Ӧzkan, B., “Enzyme-free Nickel Electrochemical
Glucose Sensor Fabricated on Pencil Graphite Electrode by Electrodeposition,” J. Mater. Sci. Mater. Electron., 34, 645 (2023).
20. Yang, Z., Jiang, L. C., Zhang, W. D. and Gunasekaran, S., “A Highly
Sensitive Non-enzymatic Glucose Sensor Based on a Simple
Two-step Electrodeposition of Cupric Oxide (CuO) Nanoparticles
Onto Multi-walled Carbon Nanotube Arrays,” Talanta, 82, 25-33
(2010).
21. Yoon, S. S., Ramadoss, A., Saravanakumar, B. and Kim, S. J.,
“Novel Cu/CuO/ZnO Hybrid Hierarchical Nanostructures for
Non-enzymatic Glucose Sensor Application,” J. Electroanal. Chem.,
717-718, 90-95(2014)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로