ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received January 25, 2022
Accepted March 23, 2022
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Downloaded

실리콘과 CNT를 사용한 리튬 이온 전지용 고용량 음극복합소재의 전기화학적 특성

Electrochemical Characteristics of High Capacity Anode Composites Using Silicon and CNT for Lithium Ion Batteries

충북대학교 화학공학과, 28644 충청북도 청주시 서원구 충대로 1
Department of Chemical Engineering, Chungbuk National University, 1 Chungdaero, Seowongu, Cheongju, Chungbuk, 28644, Korea
jdlee@chungbuk.ac.kr
Korean Chemical Engineering Research, August 2022, 60(3), 446-451(6), 10.9713/kcer.2022.60.3.446 Epub 18 July 2022
downloadDownload PDF

Abstract

본 연구에서는 용량 및 장기 안정성을 개선하기 위하여 나노 실리콘 시트와 CNT를 정전기적 결합을 통해 피치가 코팅된 나노 실리콘 시트/CNT 복합체를 합성하였다. NaCl의 결정면에 스토버 법을 통해 제조된 나노 실리카 시트를 마그네슘 열 환원법을 사용하여 나노 실리콘 시트로 환원하였다. 산 처리를 통해 음으로 도전된 CNT와 APTES 표면 처리를 통한 양으로 도전된 나노 실리콘 시트를 결합하여 나노 실리콘 시트/CNT 복합소재를 합성하였으며, 석유계 피 치를 코팅하기 위하여 THF를 용매로 사용하였다. 제조된 음극복합소재의 물리적 특성은 FE-SEM, XRD, EDS를 통하여 분석하였고, LiPF6 (EC:DMC:EMC = 1:1:1 vol%)를 전해액으로 사용하여 전지를 제조하였으며, 전기화학적 특성을 충· 방전 사이클, 율속, differential capacity, EIS 테스트를 통해 조사하였다. 높은 조성의 실리콘과 전도성이 좋은 CNT를 사용 할 경우 고용량 및 안정성이 우수한 음극소재를 제조할 수 있음을 알 수 있었다. 피치가 코팅된 나노 실리콘 시트/CNT 음극복합소재는 초기 방전 용량이 2344.9 mAh/g을 보였으며, 50 사이클 이후 용량 유지율이 81%로 피치가 코팅되지 않은 복합소재에 비해 개선된 전기화학적 성능을 확인할 수 있었다.
In this study, to improve capacity and cycle stability, the pitch coated nano silicon sheets/CNT composites were prepared through electrostatic bonding of nano silicon sheets and CNT. Silica sheets were synthesized by hydrolyzing TEOS on the crystal planes of NaCl, and then nano silicon sheets were prepared by using magnesiothermic reduction method. To fabricate the nano silicon sheets/CNT composites, the negatively charged CNT after the acid treatment was used to assemble the positively charged nano silicon sheets modified with APTES. THF as a solvent was used in the coating process of PFO pitch. The physical properties of the prepared anode composites were analysed by FE-SEM, XRD and EDS. The electrochemical performances of the synthesized anode composites were performed by current charge/discharge, rate performances, differential capacity and EIS tests in the electrolyte LiPF6 dissolve solvent (EC:DMC:EMC = 1:1:1 vol%). It was found that the anode material with high capacity and stability could be synthesized when high composition of silicon and conductivity of CNT were used. The pitch coated nano silicon sheets/CNT anode composites showed initial discharge capacity of 2344.9 mAh/g and the capacity retention ratio of 81% after 50 cycles. The electrochemical property of pitch coated anode material was more improved than that of the nano silicon sheets/ CNT composites.

References

Wang ZY, Wang WT, Xiao W, Lou XW, Energy Environ. Sci., 6, 87 (2013)
Bao Q, Huang YH, Lan CK, Chen BH, Duh JG, Electrochim. Acta, 173, 82 (2015)
Kim N, Park H, Yoon N, Lee JK, ACS Nano, 12, 3853 (2018)
Yang Y, Wang Z, Yan G, Guo H, Wang J, Li X, Zhou Y, Zhou R, Ceram. Int., 43, 8590 (2017)
Lee JH, Moon JH, Korean J. Chem. Eng., 34(12), 3195 (2017)
Liu J, Liu XW, Adv. Mater., 24, 4097 (2012)
Park JM, Cho JH, Ha JH, Kim HS, Kim SW, Lee J, Chung KY, Cho BW, Choi HJ, Nanotechnology, 28, 255401 (2017)
Dou F, Shi L, Chen G, Zhang D, Electrochem. Energ. Rev., 2, 149 (2019)
Chen S, Chen Z, Xu X, Cao C, Xia M, Luo Y, Small, 14(12), 1703361 (2018)
Su MR, Wan HF, Liu YJ, Xiao W, Dou AC, Wang ZX, Guo HJ, Powder Technol., 323, 294 (2018)
Mu TS, Zuo PJ, Lou SF, Pan QR, Li Q, Du CY, Gao YZ, Cheng XQ, Ma YL, Yin GP, Chem. Eng. J., 341, 37 (2018)
Li ZH, Li ZP, Zhong WH, Li CF, Li LQ, Zhang HY, Chem. Eng. J., 319, 1 (2017)
Martin C, Crosnier O, Retoux R, Bélanger D, Schleich DM, Brousse T, Adv. Funct. Mater., 21, 3524 (2011)
Chen YL, Hu Y, Shen Z, Chen RZ, He X, Zhang XW, Zhang Y, Wu KS, Electrochim. Acta, 210, 53 (2016)
Correa-Duarte MA, Kosiorek A, Kandulski W, Giersig M, Liz-Marzán LM, Chem. Mater., 17, 3268 (2005)
Han UJ, Hwang JU, Kim KS, Kim JH, Lee JD, Im JS, J. Ind. Eng. Chem., 73, 241 (2019)
Park GD, Choi JH, Jung DS, Park JS, Kang YC, J. Alloy. Compd., 821, 153224 (2020)
Lai J, Guo H, Wang Z, Li X, Zhang X, Wu F, Yue P, J. Alloy. Compd., 530, 30 (2012)
Lee SH, Lee JD, Korean Chem. Eng. Res., 56(4), 561 (2018)
Casas C, Li W, J. Power Sources, 208, 74 (2012)
Yoshio M, Wang H, Fukuda K, Angew. Chem.-Int. Edit., 42, 4203 (2003)
Lee TH, Lee JD, Korean Chem. Eng. Res., 59(4), 487 (2021)
Li M, Hou X, Fu L, Wang S, Hu X, Qin H, Wu Y, Ru Q, Liu X, Hu S, Electrochim. Acta, 249, 113 (2017)
Xie J, Tong L, Su L, Xu Y, Wang L, Wang Y, J. Power Sources, 342, 529 (2017)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로