ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received March 11, 2016
Accepted June 28, 2016
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Downloaded

알칼리금속과 알칼리 토금속 촉매 담지 대나무 활성탄의 NO 가스 반응 특성

Kinetics of Nitric Oxide Reduction with Alkali Metal and Alkali Earth Metal Impregnated Bamboo Activated Carbon

경상대학교 화학공학과 /공학연구원, 52828 경남 진주시 진주대로 501
Department of Chemical Engineering / Engineering Research Institute, Gyeongsang National University, 501, Jinju-daero, Jinju, Gyeongnam, 52828, Korea
Korean Chemical Engineering Research, October 2016, 54(5), 671-677(7), 10.9713/kcer.2016.54.5.671 Epub 6 October 2016
downloadDownload PDF

Abstract

대나무를 원료로 탄화 및 활성화온도 900 °C에서 대나무 활성탄을 만들고, 이 대나무 활성탄에 알칼리 금속(Na, K)과 알칼리토금속(Ca, Mg)을 담지 시켜 알칼리 담지 대나무활성탄을 제조하였다. 제조된 알칼리 담지 활성탄의 비표면적 및 세공분포 등의 물리적 특성을 분석하였다. 또한 폐 대나무활성탄의 재활용을 위하여 알칼리 담지 대나무활성탄과 NO 기체의 반응 특성 실험을 열중량분석기를 사용하여 비등온반응(반응온도 20~850 °C, NO 농도 0.1 kPa)과 등온반응(반응온도 600, 650, 700, 750, 800, 850 °C, NO 농도 0.1~1.8 kPa) 조건에서 하였다. 실험 결과, 대나무 활성탄특성 분석에서 알칼리 담지 대나무 활성탄에서는 알칼리 담지량이 증가할수록 세공 부피와 표면적이 감소하였다. 비등온과 등온 NO 반응에서는 전체적으로 Ca금속담지 대나무활성탄[BA(Ca)]과 Na금속담지 대나무활성탄[BA(Na)], K금속담지 대나무활성탄[BA(K)], Mg금속담지 대나무활성탄[BA(Mg)]이 대나무활성탄[BA]에 비하여 반응속도가 향상되는 것을 볼 수 있다. BA(Ca)> BA(Na)> BA(K)> BA(Mg)> BA 순으로 촉매 활성이 유효하였다. NO 반응에서의 활성화에너지는 82.87 kJ/mol[BA], 37.85 kJ/mol[BA(Na)], 69.98 kJ/mol[BA(K)], 33.43 kJ/mol[BA(Ca)], 88.90 kJ/mol[BA(Mg)]로 나타났고, NO 분압에 대한 반응차수는 0.76[BA], 0.63[BA(Na)], 0.77[BA(K)], 0.42[BA(Ca)], 0.30[BA(Mg)]이었다.
The impregnated alkali metal (Na, K), and the alkali earth metal (Ca, Mg) activated carbons were produced from the bamboo activated carbon by soaking method of alkali metals and alkali earth metals solution. The carbonization and activation of raw material was conducted at 900 °C. The specific surface area and the pore size distribution of the prepared activated carbons were measured. Also, NO and activated carbon reaction were conducted in a thermogravimetric analyzer in order to use for de-NOx agents of the used activated carbon. Carbon-NO reactions were carried out in the nonisothermal condition (the reaction temperature 20~850 °C, NO 1 kPa) and the isothermal condition (the reaction temperature 600, 650, 700, 750, 800, 850 °C, NO 0.1~1.8 kPa). As results, the specific volume and the surface area of the impregnated alkali bamboo activated carbons were decreased with increasing amounts of the alkali. In the NO reaction, the reaction rate of the impregnated alkali bamboo activated carbons was promoted to compare with that of the bamboo activated carbon [BA] in the order of BA(Ca)> BA(Na)> BA(K)> BA(Mg) > BA. Measured the reaction orders of NO concentration and the activation energy were 0.76[BA], 0.63[BA(Na)], 0.77[BA(K)], 0.42[BA(Ca)], 0.30 [BA(Mg)], and 82.87 kJ/mol[BA], 37.85 kJ/mol[BA(Na)], 69.98 kJ/mol[BA(K)], 33.43 kJ/mol[BA(Ca)], 88.90 kJ/mol [BA(Mg)], respectively.

References

Bak YC, Cho KJ, Choi JH, Korean Chem. Eng. Res., 43(1), 146 (2005)
Yaverbaum LH, “Nitrogen Oxides Control and Removal-Recent Developments,” Noyes Data Corporation, N.J., pp. 45-53 (1979).
Sloss LL, “Nitrogen Oxides Control Technology Fact Book,” Noyes Data Corporation, N. J., pp. 38-53(1992).
Feng B, Liu H, Yuan JW, Lin ZJ, Liu DC, Energy Fuels, 10(1), 203 (1996)
Burch TE, Tillman FR, Chen W, Lester TW, Conway RB, Sterling AM, Energy Fuels, 5, 231 (1991)
Park HM, Park YK, Jeon JK, Korean Chem. Eng. Res., 49(6), 739 (2011)
Yoon KS, Ryu SK, Korean J. Chem. Eng., 27(6), 1882 (2010)
Furusawa T, Tsunoda M, Tsujimura M, Adschri T, Fuel, 64, 1306 (1985)
Chan LK, Sarofim AF, Beer JM, Combust. Flame, 52, 37 (1983)
Suzuki T, Kyotani T, Tomita A, Ind. Eng. Chem. Res., 33(11), 2840 (1994)
Teng H, Suuberg EM, Calo JM, Energy Fuels, 6, 398 (1992)
DeGroot WF, Richards GN, Carbon, 29(2), 179 (1991)
Teng HS, Lin HC, Hsieh YS, Ind. Eng. Chem. Res., 36(3), 523 (1997)
Park SJ, Kim BJ, Kawasaki J, Korean Chem. Eng. Res., 41(5), 649 (2003)
Bak YC, Energy Engg. J, 8(2), 279 (1999)
Kim J, Hong I, Ha B, J. Korean Soc. Environ. Eng., 21(3), 595 (1999)
Illangomez MJ, Linaressolano A, Radovic LR, Delecea CS, Energy Fuels, 10(1), 158 (1996)
Bak YC, Choi JH, Lee GL, Korean Chem. Eng. Res., 52(6), 807 (2014)
GarciaGarcia A, IllanGomez M, LinaresSolano A, deLecea CSM, Fuel, 76(6), 499 (1997)
Illangomez MJ, Linaressolano A, Radovic LR, Delecea CS, Energy Fuels, 9(1), 112 (1995)
Richthofen AV, Wendel E, Neuschutz D, Fresenius J. Anal. Chem., 346, 261 (1993)
Guo F, Hecker WC, ACS Div. Fuel Chem. Prepr., 41(1), 179 (1996)
Aarna I, Suuberg EM, Fuel, 76(6), 475 (1997)

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로