Overall
- Language
- korean
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received September 19, 2024
Revised April 24, 2025
Accepted April 29, 2025
Available online August 28, 2025
- Acknowledgements
- 이 논문은 인천대학교 2020년도 자체연구비 지원에 의하여 연 구되었음.
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
정수기 카본 블록 필터의 재활용을 위한 잔여 용량 간이 평가 연구
Evaluation of Remaining Capacity of Carbon Block Filters in a Household Water Purifier for Recycling
https://doi.org/10.9713/kcer.2025.63.4.105129
Download PDF
Abstract
본 연구에서는 정수기 내 카본 블록 필터의 재활용을 위하여 잔류 염소 제거율을 기반으로 간이 용량 추정치 평가를 수행하였다. 잔류 염소 제거율을 활용한 잔여 용량 추정치 평가 실험 결과 총 100개의 재활용 카본 블록 필터 중 76개가 90% 이상의 잔여 용량을 나타냈으며, 90% 잔여 용량을 나타낸 필터 중 31개는 프리 카본 블록 필터, 45개는 포스트 카본 블록 필터였다. 이를 통해 대부분의 카본 블록 필터가 잔여 용량이 남은 채 폐기되고 있음을 확인하였다. 프리 카본 블록 필터와 포스트 카본 블록 필터 중 포스트 카본 블록 필터가 상대적으로 잔여 용량이 높은 것으로 판단되었으며, 총인, 총질소 제거율과의 통계적 분석을 통해 각각 0.968, 0.9732의 높은 결정계수를 도출하여 지표의 부합성을 확인하였다. 본 연구 결과를 바탕으로, 정수기 카본 블록 필터의 재활용 시 포스트 카본 블록 필터를 선제적으로 활용할 수 있음을 확인하였으며, 잔류염소 제거율 평가를 정수기 필터의 교체 시스템에 반영하여 자원순환에 기여할 것으로 기대된다.
This study evaluated the residual capacity of carbon block filters in household water purifiers by measuring their residual chlorine removal efficiency. Analysis of 100 recycled filters revealed that 76% retained over 90% of their capacity, including 31 pre-carbon and 45 post-carbon filters. This finding indicates that filters are often discarded while still possessing significant remaining capacity, with post-carbon filters exhibiting higher residual capacity than pre-carbon filters. Statistical analysis demonstrated strong relationships between the residual chlorine removal efficiency and the removal efficiencies of total phosphorus (T-P) and total nitrogen (T-N), yielding the high coefficients of determination (0.968 and 0.9732, respectively). Thus, these results suggest that prioritizing the recycling of post-carbon block filters and integrating the removal efficiency of residual chlorine as a performance indicator into residual capacity assessment
systems for reused carbon block filters could enhance resource circulation.
References
Ritchie, L. D., “Drinking Water in the United States: Implications
of Water Safety, Access, and Consumption,” Annual Review of
Nutrition 40, 345-373(2020).
2. Mohseni, M., McBean, E. A. and Rodriguez, M. J., “Chlorination
of Drinking Water – Scientific Evidence and Policy Implications,”
Water policy and governance in canada, Renzetti, S.
and Dupont, D.P., eds., Springer International Publishing, Cham,
pp. 357-373(2017).
3. Li, X. F. and Mitch, W. A., “Drinking Water Disinfection Byproducts
(dbps) and Human Health Effects: Multidisciplinary Challenges
and Opportunities,” Environ Sci. Technol. 52, 1681-1689
(2018).
4. Shi, X. Y., Clark, G. G., Huang, C. H., Nguyen, T. H. and Yuan,
B. L., “Chlorine Decay and Disinfection by-products Formation
During Chlorination of Biofilms Formed With Simulated Drinking
Water Containing Corrosion Inhibitors,” Sci. Total. Environ. 815,
152763(2022).
5. Pan, L., Takagi, Y., Matsui, Y., Matsushita, T. and Shirasaki, N.,
“Micro-milling of Spent Granular Activated Carbon for Its Possible
Reuse as An Adsorbent: Remaining Capacity and Charac-teristics,” Water Res 114, 50-58(2017).
6. Ministry of Environment and Korea Water and Wastewater Works
Association, “2021 Report on the Status of Tap Water Consumption
Survey,” (2021) (Written in Korean)
7. Shi, X. Y., Liu, D. C., Chen, L., Lin, Y. Z., Fu, M. L., Sun, W. J.
and Yuan, B. L., “Challenges of Point-of-use Devices in Purifying
Tap Water: The Growth of Biofilm on Filters and the Formation
of Disinfection Byproducts,” Chem. Eng. J. 462, 142235(2023).
8. Stalter, D., O'Malley, E., von Gunten, U. and Escher, B. I., “Pointof-
use Water Filters Can Effectively Remove Disinfection by-
Products and Toxicity From Chlorinated and Chloraminated Tap
Water,” Environ Sci-Wat Res 2, 875-883(2016).
9. Wang, L., Chen, Y., Chen, S. W., Long, L. C., Bu, Y. A., Xu, H.
Y., Chen, B. Y. and Krasner, S., “A One-year Long Survey of
Temporal Disinfection Byproducts Variations in a Consumer’s
Tap and Their Removals by a Point-of-use Facility,” Water Res.
159, 203-213(2019).
10. Lenin, N. C., “48-volt Energy Efficient Domestic Appliances
With Flux Switching Motor Drive System-design, Simulation,
and Comparison,” Ieee Access 10, 81568(2022).
11. Cho, J.-I., Kim, G.-T. and Ahn, Y.-C., “A Study on Characteristics
of Filters for Domestic Household Water Purifier,” Journal
of Advanced Marine Engineering and Technology 37, 541-547
(2013).
12. Zhang, M. L., Wang, Y., Bai, M., Jiang, H. R., Cui, R. Q., Lin, K.
Z., Tan, C. H., Gao, C. L. and Zhang, C., “Metagenomics Analysis
of Antibiotic Resistance Genes, the Bacterial Community and
Virulence Factor Genes of Fouled Filters and Effluents From
Household Water Purifiers in Drinking Water,” Sci Total Environ
854, 158572(2023).
13. Bote, P. P., Vaze, S. R., Patil, C. S., Patil, S. A., Kolekar, G. B.,
Kurkuri, M. D. and Gore, A. H., “Reutilization of Carbon From
Exhausted Water Filter Cartridges (ewfc) for Decontamination
of Water: An Innovative Waste Management Approach,” Environ
Technol Inno 24, 102047(2021).
14. Pang, L. P., Lin, S. S., Premaratne, A., Tham, A., Abraham, P. and
Nokes, C., “Cryptosporidium Surrogate Removal in Five Commonly
Used Point-of-use Domestic Filters,” J. Water Process Eng. 44,
102390(2021).
15. Srivastava, A., Gupta, B., Majumder, A., Gupta, A. K. and Nimbhorkar,
S. K., “A Comprehensive Review on the Synthesis,
Performance, Modifications, and Regeneration of Activated Carbon
for the Adsorptive Removal of Various Water Pollutants,” J.
Environ. Chem. Eng. 9, 106177(2021).
16. Shin, Y. J., Kim, Y. I., Kim, J. G., Yeom, S. I. and Lee, D. G., “A
Study on Current Status and Trends of Recycling Used Water
Purifier Filters,” Journal of Korean Society on Water Environment
37, 398-404(2021).
17. Agrawal, V. and Bhalwar, R., “Household Water Purification:
Low-cost Interventions,” Medical Journal Armed Forces India
65, 260-263(2009).
18. Chen, B. Y., Jiang, J. Y., Yang, X., Zhang, X. R. and Westerhoff,
P., “Roles and Knowledge Gaps of Point-of-use Technologies
for Mitigating Health Risks From Disinfection Byproducts in
Tap Water: A Critical Review,” Water Res. 200, 117265(2021).
19. He, A., Lu, Y., Chen, F., Li, F., Lv, K., Cao, H., Sun, Y., Liang,
Y., Li, J. and Zhao, L., “Exploring the Origin of Efficient Adsorption
of Poly-and Perfluoroalkyl Substances in Household Pointof-
use Water Purifiers: Deep Insights from a Joint Experimental
and Computational Study,” Sci. Total. Environ. 831, 154988(2022).
20. Park, J. W., Park, K. Y., Na, Y., Park, S., Kim, S., Kweon, J. H.
and Maeng, S. K., “Evaluation of Organic Migration and Biomass
Formation on Polymeric Components in a Point-of-use Water
Dispenser,” Water Res. 165, 115025(2019).
21. Da'na, E. and Awad, A., “Regeneration of Spent Activated Carbon
Obtained From Home Filtration System and Applying it for
Heavy Metals Adsorption,” J. Environ. Chem. Eng. 5, 3091-3099
(2017).
22. Li, G. J., Li, Q., Ye, J. L., Fu, G. S., Han, J. J. and Zhu, Y. W.,
“Activated Carbon From the Waste Water Purifier for Supercapacitor
Application,” J. Solid. State. Electr. 21, 3169-3177(2017).
23. Gibert, O., Lefèvre, B., Fernández, M., Bernat, X., Paraira, M.
and Pons, M., “Fractionation and Removal of Dissolved Organic
Carbon in a Full-scale Granular Activated Carbon Filter Used
for Drinking Water Production,” Water Res. 47, 2821-2829(2013).
24. Shi, S. J., Wang, F. F., Hu, Y. L., Zhou, J., Zhang, H. T. and He,
C. Q., “Effects of Running Time on Biological Activated Carbon
Filters: Water Purification Performance and Microbial Community
Evolution,” Environmental Science and Pollution Research
(2024).
25. Kim, M. R., Heo, J., Kim, S. S., Shin, E. C., Boo, C. G. and Kwak,
H. S., “Effect of Filter Types on Physicochemical Properties,
Volatile Compounds, and Sensory Evaluations of Purified Water
by Point-of-use Water Treatment,” Foods 10, 1958(2021).
26. Wu, C. C., Ghosh, S., Martin, K. J., Pinto, A. J., Denef, V. J., Olson,
T. M. and Love, N. G., “The Microbial Colonization of Activated
Carbon Block Point-of-use (pou) Filters With and Without Chlorinated
Phenol Disinfection by-products,” Environ Sci-Wat Res.
3, 830-843(2017).
27. Yang, Y., Zhang, S., Yang, G. F., Li, H. H., Wang, J. J. and Li, W.
Y., “Biological Activated Carbon Filtration Controls Membrane
Fouling and Reduces by-products From Chemically Enhanced
Backwashing During Ultrafiltration Treatment,” Water-Sui 15,
3803(2023).

