Overall
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received May 26, 2025
Revised June 10, 2025
Accepted June 17, 2025
Available online August 1, 2025
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
Liquid-liquid Equilibria of Cyclohexene-cyclohexane with Betaine-glycerol DES: Experiments and Correlation
https://doi.org/10.9713/kcer.2025.63.3.105123
Download PDF
Abstract
This study investigates the liquid-liquid equilibria (LLE) of a ternary system comprising cyclohexene,
cyclohexane, and a betaine-glycerol deep eutectic solvent (DES) at 303.2 K, 313.2 K, and 323.2 K. The DES was
synthesized using a 1:5 molar ratio of betaine to glycerol. LLE data were correlated using Non-Random Two-Liquid
(NRTL) and Universal Quasi-Chemical (UNIQUAC) models. Distribution coefficients (D1) for cyclohexene decreased
with increasing temperature, ranging from 0.06 at 303.2 K to 0.02 at 323.2 K for a cyclohexene mole fraction of 0.8 in
the raffinate phase. Selectivity (S) values exceeded 1 at higher cyclohexene concentrations. The Othmer-Tobias equation
confirmed data consistency with r2 values close to 1. UNIQUAC model showed superior performance with lower RMSD
values compared to NRTL. This research demonstrates the potential of betaine-based DES as an environmentally friendly
alternative for cyclohexene/cyclohexane separation in petrochemical processes.
Keywords
References
and Use of Adipic Acid,” Catal. Today., 9, 237-254(1991).
2. Xie, F., Chen, L., Morales, E.M.C., Ullah, S., Fu, Y., Thonhauser, T.,
Tan, K., Bao, Z. and Lide, J., Complete Separation of Benzene
Cyclohexene-cyclohexane Mixtures via Temperature-dependent
Molecular Sieving by a Flexible Chain-like Coordination Polymer,”
Nature Comm., 15, 22-40(2024).
3. Ayuso, M., Ovejero-Pérez, A., Delgado-Mellado, N., Navarro,
P., Larriba, M., García, J. and Rodríguez, F., “Tetrathiocyanatocobaltate
and Bis(trifluoromethylsulfonyl)imide-based Ionic Liquids
as Mass Agents in the Separation of Cyclohexane and Cyclohexene
Mixtures by Homogeneous Extractive Distillation,” J. Chem.
Thermodyn., 157, 106403(2021).
4. Perry, R. H., Green, D. W. and Maloney, J. O., Perry’s Chemical
Engineer’s Handbook, 7th Ed., New York(1997).
5. Yi, C. C. and Chien, I. L., “Control Study to Enhance the Controllability
of Heterogeneous Extractive Distillation: Cyclohexane/
cyclohexene Separation,” Ind. Eng. Chem. Res., 58, 3211-3224(2019).
6. Boli, E. and Voutsas, E., “Ionic Liquids as Entrainers for the
Separation of Azeotropic Mixtures: Experimental Measurements
and COSMO-RS Predictions,” Chem. Eng. Sci., 219, 115579(2020).
7. Wang, S., Guo, C., Liang, J. and Gui, Y., “A Dual Entrainer
Approach with Ionic Liquids for Enhanced Recovery of Ethanol
and Isopropyl Alcohol From Wastewater,” J. Water Proc. Eng.,
69, 106879(2025).
8. Yu, G., Dai, C., Liu, N., Xu, R., Wang, N. and Chen, B., “Hydrocarbon
Extraction with Ionic Liquids,” Chem. Rev., 124, 3331-
3391(2024).
9. Park, J. W. and Park, Y., “Liquid-liquid Equilibria of Toluene +
n-heptane + {1-benzyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)
imide or 1-benzyl-pyridinium bis(trifluoro-methyl-sulfonyl)imide},
Korean J. Chem. Eng., 35, 1203-1208(2018).
10. Costa, S. P. F., Azevedo, A. M. O., Pinto, P. C. A. G. and Saraiva,
M. L. M. F. S., “Environmental Impact of Ionic Liquids: Recent
Advances in (eco)toxicology and (bio)degra-dability,” ChemSus-
Chem, 10, 2321-2347(2017).
11. Jung, M. and Park, Y., “Thermophysical Properties and Liquidliquid
Equilibria of Pseudoternary Systems {toluene + n-heptane +
deep Eutectic Solvents Based on Levulinic Acid,” J. Chem. Eng.
Data, 67, 416-427(2022).
12. Wu, X., Shi, J., Yu, H., Li, Q., Zhou, Z. and Ren, Z., “Pyridine
Ionic Liquid-based Deep Eutectic Solvents Selectively Separating
Toluene from Alkanes,” Energy & Fuels, 37, 4233-4243(2023).
13. Wang, D., Wang, Y., Ma, R., Ma, J., Xu, M., Ai, L., Leng, C., Ma,
Q., Jia, D., Wang, L. and Guo, N., “Efficient and Green Separation
of Phenolics by Halogen Free Deep Eutectic Solvents,” J. Mol.
Liquids, 417, 126602(2025).
14. Płotka-Wasylka, J., Guardia, M., Andruch, V. and Vilková, M.,
“Deep Eutectic Solvents vs Ionic Liquids: Similarities and Differences,”
MicroChem. J., 159, 105539(2020).
15. Abranches, D. O., Silva, L. P., Martins, M. A. R., Pinho, S. P.
and Coutinho, J. A. P., “Understanding the Formation of Deep Eutectic
Solvents: Betaine as a Universal Hydrogen Bond Acceptor,”
ChemSusChem, 13, 4916-4921(2020).
16. Mulia, K., Nasruddin, K. E. and Libriandy, E., “Betaine-based
Deep Eutectic Solvents with Diol, Acid and Amine,” IOP Conf.
Series: Journal of Physics: Conf. Series. 1295, 012039(2019).
17. Monteiro, H., Paiva, A., Duarte, A. R. C. and Galamba, N., “Structure
and Dynamic Properties of a Glycerol-betaine Deep Eutectic
Solvent: What does a DES Become an Aqueous Solution,” ACS
Sustainable Chem. Eng., 10, 3501-3512(2022).
18. Renon, H. and Prausnitz, J. M., “Local Compositions in Thermodynamics
Excess Functions for Liquids Mixtures,” AIChE J.,
14, 116-128(1968).
19. Abrams, D. S. and Prausnitz, J. M., “Statistical Thermodynamics of
Liquid Mixtures: a New Expression for the Excess Gibbs Energy
of Partly or Completely Miscible Systems,” AIChE J., 21, 116-
128(1975).
20. Park, Y., “Separation of Toluene from a Toluene/n-heptane Mixture
Using Ethylene Glycol Containing Deep Eutectic Solvents,” Korean
J. Chem. Eng., 38, 604-609(2021).
21. Mulyono, S., Hizaddin, H. F., Alnashef, I. M., Hashim, M. A.,
Fakeeha, A. F. and Hadj-Kali, M. K., “Separation of BTEX Aromatics
from n-octane Using a (tetrabutylammonia bromide + sulfolane)
Deep Eutectic Solvent – experiments and COSCO-RS Prediction,”
RSC Adv., 4, 17597(2014).
22. Rodriguez, N. R., Gerlach, T., Scheepers, D., Kroon, M. C. and
Smirnova, I., “Experimental Determination of the LLE Data of
Systems Consisting of {hexane + benzene + deep eutectic solvent}
and Prediction Using the Conductor-like Screening Model for
Real Solvents,” J. Chem. Thermodynam., 104, 128-137(2017).
23. Shekaari, H., Zafarani-Moattar, M. T. and Mohammadi, B., “Liquid-
liquid Equilibria for Benzene/thiophene + cyclohexane/hexadecane
+ deep Eutectic Solvents: Data and Correlation,” J. Chem. Eng.
Data, 64, 3904-3918(2019).
24. Hadj-Kali, M. K., Salleh, M. Z. M., Wazeer, I., Alhadid, A. and
Mulyono, S., “Separation of Benzene and Cyclohexane Using
Eutectic Solvents with Aromatic Structure,” Molecules, 27, 4041
(2022).
25. Velho, P., Barroca, L. R. and Macedo, E., “A Geometric Approach
for the Calculation of the Nonrandomness Factor Using Computational
Chemistry,” J. Chem. Eng. Data, 69, 3573-3583(2024).
26. Sander, S. I ., “Chemical, Biological, and Engineering Thermodynamics,”
4th Ed. Wiley, New York(2006).
27. https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.
differential_evolution.html. accessed on Feb. 14, 2025.
Authors
YoonKook Park: Professor, Department of Biological and Chemical
Engineering, Hongik University, Sejong, 30016, Korea; parky@hongik.ac.kr

