ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Overall

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received April 25, 2025
Revised May 9, 2025
Accepted June 12, 2025
Available online August 1, 2025
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

불화암모늄 도핑을 통한 에폭시사이클로펜탄 하이드레이트 내 메탄올 포집 연구: PXRD 및 Rietveld 정련법을 이용한 구조 분석

Encapsulation of Methanol in Ammonium Fluoride doped Epoxycyclopentane Hydrate: Structural Investigations through PXRD and Rietveld Refinement

Department of Integrative Engineering for Hydrogen Safety, Kangwon National University 1Research Institute for Earth Resources, Kangwon National University 2Department of Energy and Resources Engineering, Kangwon National University
minjun.cha@kangwon.ac.kr
Korean Chemical Engineering Research, August 2025, 63(3), 105122
https://doi.org/
downloadDownload PDF

Abstract

이 연구에서는 불화암모늄이 도핑된 구조 II (clathrate structure II) 하이드레이트 내에 에폭시사이클로펜탄(ECP)과

메탄올(MeOH)이 포집된 결정 구조를 정밀 분석하였다. 하이드레이트의 주체 격자는 불화암모늄과 물 분자로 구성되

며, ECP 및 메탄올은 객체 분자로서 각각 큰 동공과 작은 동공 내에 포집될 가능성이 검토되었다. 분말 X-선 회절

(PXRD) 및 Rietveld 정련법을 통해 구조 II 하이드레이트의 형성을 확인하였으며, direct space method를 활용하여 동

공 내 객체 분자의 위치를 정밀하게 모델링하였다. 시각화 및 분자 간 거리 분석 결과, ECP는 큰 동공 내에, 메탄올은

작은 동공에 안정적으로 포집되었으며, 수소결합 가능성을 지닌 상호작용이 관찰되었다. 이러한 결과는 억제제 계열

분자의 포집 메커니즘에 대한 기초 데이터를 제고해줄 것으로 여겨진다.

In this study, the crystal structure of clathrate structure II hydrate doped with ammonium fluoride was

thoroughly analyzed with a focus on the encapsulation of epoxybicyclopentane (ECP) and methanol (MeOH). The host

lattice of the hydrate is composed of ammonium fluoride and water molecules, while ECP and MeOH act as guest

molecules occupying the large and small cages, respectively. Powder X-ray diffraction (PXRD) combined with Rietveld

refinement confirmed the formation of structure II hydrate. The positions of the guest molecules in the cages were

accurately modeled using a direct space method. Visualization and intermolecular distance analysis revealed that ECP is

stably encapsulated in the large cages, while MeOH is stabilized in the small cages through interactions that potentially

involve hydrogen bonding. These findings provide fundamental insights into the encapsulation mechanism of inhibitortype

guest molecules.

References

1. Sloan, E. D. and Koh, C. A., “Clathrate Hydrates of Natural Gases,”
3rd Edition, Boca Raton, FL(2008).
2. Sloan, E. D., “Fundamental Principles and Applications of Natural
Gas Hydrates,” Nature, 426(6964), 353-359(2003).
3. Ko, G., Lee, J. and Seo, Y., “Separation Efficiency and Equilibrium
Recovery Ratio of SF6 in Hydrate-Based Greenhouse Gas
Separation,” Chem. Eng. J., 405, 126956(2021).
4. Seo, Y., Lee, S. and Lee, H., “Experimental Measurements of
Hydrate Phase Equilibria for Carbon Dioxide in the Presence of
THF, Propylene Oxide, and 1,4-Dioxane,” J. Chem. Eng. Data,
53(12), 2833-2837(2008).
5. Kang, S.-P. and Lee, H., “Recovery of CO2 from Flue Gas Using
Gas Hydrate: Thermodynamic Verification through Phase Equilibrium
Measurements,” Environ. Sci. Technol., 34(20), 4397-4400
(2000).
6. Lee, S., Park, S., Lee, Y. and Seo, Y., “Thermodynamic and 13C NMR
Spectroscopic Verification of Methane–Carbon Dioxide Replacement
in Natural Gas Hydrates,” Chem. Eng. J., 225, 636-640(2013).
7. Eslamimanesh, A., Mohammadi, A. H., Richon, D., Naidoo, P.
and Ramjugernath, D., “Application of Gas Hydrate Formation
in Separation Processes: A Review of Experimental Studies,” J.
Chem. Thermodyn., 46, 62-71(2012).
8. Babu, P., Linga, P., Kumar, R. and Englezos, P., “A Review of
the Hydrate Based Gas Separation (HBGS) Process for Carbon
Dioxide Pre-Combustion Capture,” Energy, 85, 261-279(2015).
9. Cha, I., Lee, S., Lee, J. D., Lee, G. W. and Seo, Y., “Separation of
SF6 from Gas Mixtures Using Gas Hydrate Formation,” Environ.
Sci. Technol., 44(16), 6117-6122(2010).
10. Park, K. H., Jeong, D., Yoon, J. H. and Cha, M., “Experimental
Measurements of Phase Equilibria Conditions for Methane Hydrates
Containing Methanol/Ethylene Glycol and NH4Cl Solutions,”
Fluid Ph. Equilib., 493, 43-49(2019).
11. Sloan, E. D., Koh, C. A. and Sum, A. K., “Natural Gas Hydrates
in Flow Assurance,” Burlington, MA (2010).
12. Lv, X. F., Shi, B. H., Wang, Y., Tang, Y. X., Wang, L. Y. and Gong,
J., “Experimental Study on Hydrate Induction Time of Gas-Saturated
Water-in-Oil Emulsion Using a High-Pressure Flow Loop,”
Oil Gas Sci. Technol. - Rev. IFP Energies Nouvelles, 70(6), 1111-
1124(2015).
13. Ke, W. and Kelland, M. A., “Kinetic Hydrate Inhibitor Studies
for Gas Hydrate Systems: A Review of Experimental Equipment
and Test Methods,” Energ. Fuel, 30(12), 10015-10028(2016).
14. Alavi, S., Takeya, S., Ohmura, R., Woo, T. K. and Ripmeester, J.
A., “Hydrogen-Bonding Alcohol-Water Interactions in Binary
Ethanol, 1-Propanol, and 2-Propanol+Methane Structure II Clathrate
Hydrates,” J. Chem. Phys., 133(7), 074505(2010).
15. Sizikov, A. A., Manakov, A. Y. and Aladko, E. Y., “Pressure Dependence
of Gas Hydrate Formation in Triple Systems Water–2-
Propanol–Methane and Water–2-Propanol–Hydrogen,” Fluid Ph.
Equilib., 425, 351-357(2016).
16. Cha, M., Shin, K. and Lee, H., “Structure Identification of Binary
1-Propanol+Methane Hydrate Using Neutron Powder Diffraction,”
Korean J. Chem. Eng., 34(9), 2514-2518(2017).
17. Park, K. H., Shin, K. and Cha, M., “Spectroscopic Observations
of Host-Guest Hydrogen Bonding in Binary Cyclopropanemethanol
Plus Methane Hydrate,” J. Phys. Chem. C, 123(44), 26777-
26784(2019).
18. McGregor, P. A., Allan, D. R., Parsons, S. and Pulham, C. R.,
“The Low-Temperature and High-Pressure Crystal Structures of
Cyclobutanol (C4H7OH),” Acta. Crystallogr. B, 61, 449-454(2005).
19. Youn, Y., Cha, M. and Lee, H., “Spectroscopic Observation of
the Hydroxy Position in Butanol Hydrates and Its Effect on Hydrate
Stability,” ChemPhysChem, 16(13), 2876-2881(2015).
20. Park, K. H., Kim, D. H. and Cha, M., “Spectroscopic Observations
of Host–Guest Interactions Occurring in (Cyclobutanemethanol
+ Methane) Hydrate and Their Potential Application to Gas Storage,”
Chem. Eng. J., 421, 127835(2020).
21. Lee, B., Kim, J., Shin, K., Park, K. H., Cha, M., Alavi, S. and
Ripmeester, J. A., “Managing Hydrogen Bonding in the Clathrate
Hydrate of the 1-Pentanol Guest Molecule,” Crystengcomm, 23,
4708-4716(2021).
22. Park, K. H., Kim, D. H. and Cha, M., “Spectroscopic Identifications
of Structure II Hydrate with New Large Alcohol Guest
Molecule (Cyclopentanemethanol),” Chem. Phys. Lett., 779, 138869
(2021).
23. Seol, J., Park, J. and Shin, W., “Epoxycyclopentane Hydrate for
Sustainable Hydrate-Based Energy Storage: Notable Improvements
in Thermodynamic Condition and Storage Capacity,” Chem. Commun.,
56(60), 8368-8371(2020).
24. Park, K. H., Kim, D. H. and Cha, M., “Structure Identification of
Binary (Cyclic Alcohol Guests + Methane) Clathrate Hydrates
Using Rietveld Analysis with the Direct Space Method,” Chem.
Phys. Lett., 806, 140054(2022).
25. Bobev, S. and Tait, K. T., “Methanol - Inhibitor or Promoter of
the Formation of Gas Hydrates from Deuterated Ice?,” Am. Mineral.,
89(8-9), 1208-1214(2004).
26. Shin, K., Udachin, K. A., Moudrakovski, I. L., Leek, D. M., Alavi,
S., Ratcliffe, C. I. and Ripmeester, J. A., “Methanol Incorporation
in Clathrate Hydrates and the Implications for Oil and Gas Pipeline
Flow Assurance and Icy Planetary Bodies,” Proc. Natl. Acad.
Sci. U.S.A., 110(21), 8437-8442(2013).
27. Shin, K., Moudrakovski, I. L., Davari, M. D., Alavi, S., Ratcliffe,
C. I. and Ripmeester, J. A., “Crystal Engineering the Clathrate
Hydrate Lattice with NH4F,” Crystengcomm, 16(31), 7209-7217
(2014).
28. Kim, D. H., Park, K. H., Cha, M. and Yoon, J.-H., “Structure
Determination of Clathrate Hydrates Formed from Alcoholic
Guests with NH4Cl and H2O,” Korean J. Chem. Eng., 39(8),
2211-2216(2022).
29. Semenov, A. P., Tulegenov, T. B., Mendgaziev, R. I., Stoporev,
A. S., Istomin, V. A., Sergeeva, D. V., Lednev, D. A. and Vinokurov,
V. A., “Dual Nature of Methanol as a Thermodynamic Inhibitor
and Kinetic Promoter of Methane Hydrate Formation in a Wide
Concentration Range,” J. Mol. Liq., 403, 124780(2024).
30. Shin, J. W., Eom, K. and Moon, D., “BL2D-SMC, the Supramolecular
Crystallography Beamline at the Pohang Light Source II,
Korea,” J. Synchrotron Radiat., 23, 369-373(2016).
31. Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N.
and Hausermann, D., “Two-Dimensional Detector Software: From
Real Detector to Idealised Image or Two-Theta Scan,” High
Press. Res., 14, 235-248(1996).
32. Rodriguez-Carvajal, J., “Fullprof: A Program for Rietveld Refinement
and Profile Matching Analysis of Complex Powder Diffraction
Patterns (ILL, Unpublished),” Physica B, 192(55), (1993).
33. Favre-Nicolin, V. and Černý, R., “Fox, ‘Free Objects for Crystallography’:
A Modular Approach Toab Initiostructure Determination
from Powder Diffraction,” J. Appl. Crystallogr., 35(6), 734-743
(2002).
34. Park, K. H., Cha, M. and Park, C., “Structural Characterization
of (Epoxycyclopentane+Methane) and (Epoxycyclopentane+ Hydrogen)
Clathrate Hydrates,” Korean J. Chem. Eng., In Press(2025).
35. Kim, D. H., Park, K. H. and Cha, M., “Rietveld Analysis of Binary
(2,5-Dihydrofuran+Methane) and (2,3-Dihydrofuran+Methane)
Clathrate Hydrates,” Korean J. Chem. Eng., 41, 869-877(2024).
36. Park, K. H., Kim, D. H., Yoon, J.-H. and Cha, M., “Tuning
Cyclopropanecarboxaldehyde Clathrate Hydrates for Enhancement
of Methane Storage,” Chem. Eng. J., 477(1), 147015(2023).
37. Park, K. H., Kim, D. H. and Cha, M., “Phase Equilibria and
Spectroscopic Identification of Structure II Hydrates with New
Hydrate-Forming Agents (Cyclopropylamine and Cyclopentylamine),”
J. Phys. Chem. C, 126, 13585-13594(2022).
38. Chen, S., Wang, Y., Lang, X., Fan, S. and Li, G., “Rapid and High
Hydrogen Storage in Epoxycyclopentane Hydrate at Moderate
Pressure,” Energy, 268, 126638(2023).
39. Hao, B., Wu, W., Guo, Y., Thanh Pham, V., Li, C., Zhou, Y. and
Zheng, Q., “Potential Applications of Epoxycyclopentane at
Ambient Temperatures in the Synthesis of Natural Gas Hydrate
Suitable for Storage and Transportation Conditions,” Fuel, 372,
132116(2024).
40. Lee, S., Seo, D., Lee, Y., Yang, W., Moon, S. and Park, Y., “Enhancing
Hydrate-Based Natural Gas Storage Capacity Via Optimal
Concentrations of Epoxycyclopentane,” Chem. Eng. J., 502, 157992
(2024).
41. Moon, S., Lee, S., Ahn, Y.-H. and Park, Y., “Abnormal Thermodynamic
Promotion and Tuning Behavior of Epoxycyclopentane
for Its Implications in CO2 Storage,” Chem. Eng. J., 425, 130647
(2021).
42. Chen, S., Wang, Y., Lang, X., Fan, S. and Li, G., “Phase Equilibrium
of Hydrogen Clathrate Hydrates with Propylene Oxide
and 1,2-Epoxycyclopentane,” J. Chem. Eng. Data, 68(5), 1184-
1190(2023).
43. Dassault Systèmes, “Materials Studio,” 2022 HF1, San Diego.
44. Segall, M., Lindan, P. J., Probert, M. A., Pickard, C., Hasnip, P.
J., Clark, S. and Payne, M., “First-Principles Simulation: Ideas,
Illustrations and the Castep Code,” J. Phys. Condens. Matter, 14,
2717(2002).
45. Takeya, S., Udachin, K. A., Moudrakovski, I. L., Susilo, R. and
Ripmeester, J. A., “Direct Space Methods for Powder X-Ray Diffraction
for Guest−Host Materials: Applications to Cage Occupancies
and Guest Distributions in Clathrate Hydrates,” J. Am. Chem. Soc.,
132(2), 524-531(2010).
46. Momma, K. and Izumi, F., “VESTA 3 for Three-Dimensional Visualization
of Crystal, Volumetric and Morphology Data,” J. Appl.
Crystallogr., 44, 1272-1276(2011).
47. Park, S., Lim, D., Seo, Y. and Lee, H., “Incorporation of Ammonium
Fluoride into Clathrate Hydrate Lattices and Its Significance
in Inhibiting Hydrate Formation,” Chem. Commun., 51(42), 8761-
8764(2015).
48. Lee, B., Shin, K., Alavi, S. and Ripmeester, J. A., “Effect of
Ammonium Fluoride Doping on Nitrogen, Oxygen, and Methane
Clathrate Hydrates,” Energ. Fuel, 36(18), 11123-11131(2022).
49. Kim, J., Shin, K., Alavi, S. and Ripmeester, J. A., “Effect of Methanol
Guests on Thermal Properties of NH4F-Doped THF Clathrate
Hydrate,” Energ. Fuel, 36(18), 10504-10511(2022).
50. Kim, J., Lee, B., Shin, K., Kang, S.-P., Park, K. H., Cha, M., Alavi,
S. and Ripmeester, J. A., “Incorporation of Ammonium Fluoride
and Methanol in Carbon Dioxide Clathrate Hydrates and Their
Significance for Hydrate-Based Gas Separation,” Ind. Eng. Chem.
Res., 60(30), 11267-11276(2021).
51. Shin, K., Moudrakovski, I. L., Ratcliffe, C. I. and Ripmeester, J.
A., “Managing Hydrogen Bonding in Clathrate Hydrates by
Crystal Engineering,” Angewandte Chemie (International ed. in
English), 56(22), 6171-6175(2017).

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로