ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2025 KICHE. All rights reserved

Overall

Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received February 13, 2025
Revised February 20, 2025
Accepted June 13, 2025
Available online August 1, 2025
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

2종의 금속 산화물 나노구조체를 이용한 샤프심 전극 기반의 비효소적 H2O2 센서

Non-enzymatic H2O2 Electrochemical Sensor Based on Pencil Graphite Electrode Using Two Types of Metal Oxides Nanostructures

Department of Nano Convergence Engineering, Seokyeong University,
서경대학교 나노융합공학과
mjsong@skuniv.ac.kr
Korean Chemical Engineering Research, August 2025, 63(3), 105119
https://doi.org/10.9713/kcer.2025.63.3.105119
downloadDownload PDF

Abstract

본 연구에서는 다양한 분야에서 광범위하게 사용할 수 있는 저가의 일회용 전기화학센서 개발을 위해 샤프심 전

극(PGE)을 기반으로 2종의 금속 산화물 CuO와 NiO 나노구조체를 도입하여 PGE/CuO/NiO 전극을 제작하고, 비

효소적 H2O2 검출용 전기화학센서에 적용하였다. PGE/CuO/NiO 전극은 PGE의 전처리 공정과 CuO 및 NiO 나노

구조체의 전기화학적 합성 공정을 통해 제작되었으며, 시간대전류법(CA)과 순환전압 전류법(CV), 전기화학 임피던

스(EIS) 분석법을 이용하여 분석되었다. PGE 전극에 2종의 금속 산화물의 접목은 전극과 산화-환원 화학종 간의

직접적이고 효율적인 전자전달과 전극의 전도도 및 유효면적 증가 등 전기화학적 특성 향상을 가져왔다. 이는 NiO

와 CuO의 접목을 통해 NiO에서의 Ni3+ 이온 생성 증가와 함께 전하 캐리어 농도 증가에 기인한 것으로, 결과적으

로 NiO NPs와 CuO NPs의 시너지 효과 덕분에 전기화학적 센싱 성능도 향상되었다. 본 연구의 결과를 기반으로

다양한 나노구조체 도입 및 표면 개질을 통해 저가의 고성능 일회용 전극 소재 및 센서 개발에 응용될 수 있을 것

으로 기대된다.

We developed the PGE/CuO/NiO electrode as low-cost, disposable electrode material and it was applied to

non-enzymatic electrochemical sensor for H2O2 detection. The PGE/CuO/NiO electrode was based on pencil lead

using CuO and NiO nanostructures. This electrode was fabricated through the pretreatment processes of PGE and

electrochemical deposition of CuO and NiO nanostructures. And it was analyzed using chronoamperometry (CA), cyclic

voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques. The integration of two metal oxides

onto the PGE electrode improved its electrochemical properties, including direct and efficient electron transfer between

the electrode and redox species, as well as enhanced conductivity and effective surface area of the electrode. It is attributed to

the increased generation of Ni3+ in NiO and the resulting increase in charge carrier concentration through the integration

of NiO and CuO. As a result, its electrochemical sensing performance was enhanced due to the synergistic effect of NiO

NPs and CuO NPs. Based on the results of this study, it is expected that it can be applied to the development of low-cost,

high-performance disposable electrode materials and electrochemical sensors through the introduction of various

nanomaterials and surface modification.

References

1. Liu, M., An, M., Xu, J., Liu, T., Wang, L., Liu, Y. and Zhang, J.,
“Three-dimensional Carbon Foam Supported NiO Nanosheets
as Non-enzymatic Electrochemical H2O2 Sensor,” Appl. Surf.
Sci., 542, 148699(2021).
2. Song, M. J., “A Non-enzymatic Hydrogen Peroxide Sensor
Based on CuO Nanoparticles/polyaniline on Flexible CNT Fiber
Electrode,” Korean Chem. Eng. Res., 61, 196-201(2023).
3. Gibi, C., Liu, C. H., Barton, S., Anandan, S. and Wu, J. J., “Carbon
Materials for Electrochemical Sensing Application – A Mini
Review,” J. Taiwan Inst. Chem. Eng., 154, 105071(2024).
4. Pourbeyram, S. and Mehdizadeh, K., “Nonenzymatic Glucose
Sensor Based on Disposable Pencil Graphite Electrode Modified
by Copper Nanoparticles,” J. Food. Drug. Anal., 24, 894-
902(2016).
5. Özcan, A., Gürbüz, M. and Özcan, A. A., “Preparation of a Disposable
and Low-cost Electrochemical Sensor for Propham Detection
Based on Over-oxidized Poly(Thiophene) Modified Pencil
Graphite Electrode,” Talanta, 187, 125-132(2018).
6. Sreekumar, A., Navaneeth, P., Suneesh, P. V., Nair B. G. and
Babu, T. G. S., “A Graphite Pencil Electrode with Electrodeposited
Pt-CuO for Nonenzymatic Amperometric Sensing of Glucose Over
a Wide Linear Response Range,” Microchim. Acta, 187, 113(2020).
7. Xu, Y., Ding, Y., Zhang, L. and Zhang, X., “Highly Sensitive
Enzyme-free Glucose Sensor Based on CuO-NiO Nanocomposites
by Electrospinning,” Compos. Commun., 25, 100687(2021).
8. Ghanbari, K. and Babaei, Z., “Fabrication and Characterization
of Non-enzymatic Glucose Sensor Based on Ternary NiO/CuO/
Polyaniline Nanocomposite,” Anal. Biochem., 498, 37-46(2016).
9. Zhang, H. and Liu, S., “Nanoparticles-assembled NiO Nanosheets
Templated by Graphene Oxide Film for Highly Sensitive Nonenzymatic
Glucose Sensing,” Sens. Actuators B, 238, 788-794(2017).
10. Fernández, I., Carinelli, S., González-Mora, J. L., Villalonga, R.
and Salazar-Carballo, P. A., “Nickel Oxide Nanoparticles/carbon
Nanotubes Nanocomposite for Non-enzymatic Determination of
Hydrogen Peroxide,” Electroanal., 35, 2200192(2023).
11. Heydari, H., Gholivand, M. B. and Abdolmaleki, A., “Cyclic
Voltammetry Deposition Od Copper Nanostructure on MWCNTs
Modified Pencil Graphite Electrode: An Ultra-sensitive Hydrazine
Sensor,” Mater. Sci. Eng. C, 66, 16-24(2016).
12. Song, M. J., “Electrochemical Characteristics of Pencil Graphite
Electrode Through Surface Modification and Its Application
of Non-enzymatic Glucose Sensor,” Korean Chem. Eng. Res.,
62, 147-152(2024).
13. Fang, L., Cai, Y., Huang, B., Cao, Q., Zhu, Q., Tu, T., Ye, X. and
Liang, B., “A Highly Sensitive Nonenzymatic Glucose Sensor Based
on Cu/Cu2O Composite Nanoparticles Decorated Single Carbon
Fiber,” J. Electroanal. Chem., 880, 114888(2021).
14. Chang, T., Li, Zijiong, Yun, G., Jia Y. and Yang, H., “Enhanced
Photocatalytic Activity of ZnO/CuO Nanocomposites Synthesized
by Hydrothermal Method,” Nano-Micro Lett., 5, 163-168
(2013).
15. Torz-Piotrowska, R., Wrzyszczyński, A., Paprocki, K., Szreiber,
M., Uniszkiewicz, C. and Staryga, E., “The Application of CVD
Diamond Films in Cyclic Voltammetry,” J. Achiev. Mater. Manuf.
Eng., 37, 486-491(2009).
16. Upadhyay, S., Rao, G. R., Sharma, M. K., Bhattacharya, B. K., Rao,
V. K. and Vijayaraghavan, R., “Immobilization of Acetylcholineesterase-
choline Oxidase on a Gold-platinum Bimetallic Nanoparticles
Modified Glassy Carbon Electrode for the Sensitive Detection
of Organophosphate Pesticides, Carbamates and Nerve Agents,”
Biosens. Bioelectron., 25, 832-838(2009).
17. Felix, S., Chakkravarthy, B. P., Jeong, S. K. and Grace, A. N.,
“Synthesis of Pt Decorated Copper Oxide Nanoleaves and Its
Electrochemical Detection of Glucose,” J. Electrochem. Soc., 162,
H392-H396(2015).
18. Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals
and Applications, 2nd ed., John Wiley and Sons, New
York (1980).
19. Achari, D. S., Santhosh, C., Deivasegamani, R., Nivetha, R.,
Bhatnagar, A., Jeong, S. K. and Grace, A. N., “A non-enzymatic
Sensor for Hydrogen Peroxide Based on the Use of a-Fe2O3
Nanoparticles Deposited on the Surface of NiO Nanosheets,”
Microchim. Acta, 184, 3223-3229(2017).
20. Ping, J., Ru, S., Fan, K., Wu, J. and Ying, Y., “Copper Oxide
Nanoparticles and Ionic Liquid Modified Carbon Electrode for
the Non-enzymatic Electrochemical Sensing of Hydrogen Peroxide,”
Microchim. Acta, 171, 117-123(2010).
21. Kang, M., Lee, Y., Jung, H., Shim, J. H., Lee, N. S., Baik, J. M.,
Lee, S. C., Lee, C. and Kim, M. H., “Single Carbon Fiber Decorated
with RuO2 Nanorods as a Highly Electrocatalytic Sensing Element,”
Anal. Chem., 84, 9485-9491(2012).
22. Mu, Y., Jia, D., He, Y., Miao, Y. and Wu, H. L., “Nano Nickel
Oxide Modified Nonenzymatic Glucose Sensors with Enhanced
Sensitivity Through an Electrochemical Process Strategy at High
Potential,” Biosens. Bioelectron., 26, 2948-2952(2011).
23. Turky, A. M., “Electrical Surface and Catalytic Properties of NiO
as Influenced by Doping with CuO and Ag2O,” Appl. Catal. A,
247, 83-93(2003).
24. Reitz, T. L., Lee, P. L., Czaplewski, K. F., Lang, J. C., Popp, K.
E. and Kung, H. H., “Time-resolved XANES Investigation of
CuO/ZnO in the Oxidation Methanol Reforming Reaction,” J.
Catal., 199, 193-201(2001).

The Korean Institute of Chemical Engineers. F5,119, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로