Overall
- Conflict of Interest
- In relation to this article, we declare that there is no conflict of interest.
- Publication history
-
Received February 13, 2025
Revised May 14, 2025
Accepted June 10, 2025
Available online August 1, 2025
-
This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Most Cited
C1-가스 생물전환 공정의 물질전달 효율 향상을 위한 최근 연구 동향
Recent Advances on Enhancing Mass Transfer Efficiency in C1-Gas Bioconversion Processes
https://doi.org/10.9713/kcer.2025.63.3.105118
Download PDF
Abstract
메탄(CH4)과 일산화탄소(CO)와 같은C1-가스를 활용한 미생물 생물전환 공정은 지속 가능한 탄소자원 활용 기술로
주목받고 있으나, 낮은 기체 용해도와 물질전달 효율 저하가 주요 제한 요인으로 작용한다. 이를 극복하기 위해 생물
반응기 구조 최적화, 기체 확산 촉진 첨가제, 그리고 나노유체 적용을 통한 물질전달 성능 향상 전략이 연구되고 있다.
본 총설에서는 산업적 활용도가 높은 CH4 및 CO를 중심으로, 생물전환 공정에서 낮은 용해도와 세포독성 등의 물질
전달의 주요 장애요소를 지닌 이들 가스의 물질전달 향상을 위한 최신 연구 동향을 고찰하였다. 다양한 반응기 설계를
통해 기체 공급을 극대화하고, 계면활성제 및 전해질을 활용하여 기포 안정성을 조절하는 방안을 논의하였다. 또한, 나
노입자가 안정적으로 분산된 나노유체가 기체-액체 계면적을 증가시키고, 브라운 운동 및 대류 확산을 촉진하여 기체
용해도를 향상시키는 데 기여할 수 있음을 정리하였다. 특히, 생체친화적인 나노소재로 구성된 나노유체는 미생물과의
직접적인 상호작용을 통해 물질전달 저항을 줄이고, CH4 및 CO의 생물전환 효율을 개선하는 기능을 수행할 것으로
전망된다. 향후, C1-가스 물질전달 효율 향상 기술은 반응기 설계와 결합하여 물질전달 성능을 극대화하는 방향으로
발전할 것이며, 산업적 규모에서의 적용을 통해 보다 효율적인 C1-가스 전환 공정이 구현될 것으로 기대된다. 이를 통
해, 저탄소·친환경 바이오프로세스로의 전환이 가속화될 것이며, 생물전환 기술의 상업적 활용 범위도 확대될 것이다.
Microbial bioconversion of C1-gases, such as methane and carbon monoxide, is a promising approach for
sustainable carbon utilization but faces challenges due to poor gas solubility and mass-transfer limitations. To address
these issues, recent studies have explored enhancing mass transfer efficiency through modifications in bioreactor
configuration and design, gas diffusion-enhancing additives, and biocompatible nanofluids. This review provides an
overview of various bioreactor configurations and the role of surfactants and electrolytes in improving gas solubility and
enhancing the mass transfer coefficient (kLa). Additionally, nanofluids with stably suspended nanoparticles can increase
gas-liquid interfacial area, promote Brownian motion and convective diffusion, and enhance gas solubility. Biocompatible
nanofluids composed of functional bio-nanomaterials may further mitigate mass transfer limitations through direct
interactions with microorganisms, improving C1-gas bioconversion efficiency. Future developments will integrate
these strategies with advanced bioreactor configurations, enabling scalable and eco-friendly C1-gas microbial
bioconversion.
References
and Fuel Production by Microbial Gas Fermentation,” Curr.
Opin. Biotechnol., 35, 63-72(2015).
2. Comesaña-Gándara, B., García-Depraect, O., Santos-Beneit, F.,
Bordel, S., Lebrero, R. and Muñoz, R., “Recent Trends and
Advances in Biogas Upgrading and Methanotrophs-Based Valorization,”
Chem. Eng. J. Adv., 11, 100325(2022).
3. Humphreys, C. M. and Minton, N. P., “Advances in Metabolic
Engineering in the Microbial Production of Fuels and Chemicals
from C1 Gas,” Curr. Opin. Biotechnol., 50, 174-181(2018).
4. Lee, J. A., Kim, H. U., Na, J. G., Ko, Y. S., Cho, J. S. and Lee, S.
Y., “Factors Affecting the Competitiveness of Bacterial Fermentation,”
Trends Biotechnol., 41, 798-816(2023).
5. Yoon, J. and Oh, M. K., “Strategies for Biosynthesis of C1 Gas-
Derived Polyhydroxyalkanoates: A Review,” Bioresour. Technol.,
344, 126307(2022).
6. Gavala, H. N., Grimalt-Alemany, A., Asimakopoulos, K. and
Skiadas, I. V., “Gas Biological Conversions: The Potential of Syngas
and Carbon Dioxide as Production Platforms,” Waste and
Biomass Valorization, 12, 5303-5328(2021).
7. Kraakman, N. J., Rocha-Rios, J. and van Loosdrecht, M. C.,
“Review of Mass Transfer Aspects for Biological Gas Treatment,”
Appl. Microbiol. Biotechnol., 91, 873-886(2011).
8. Cantera, S., Muñoz, R., Lebrero, R., López, J. C., Rodríguez, Y.
and García-Encina, P. A., “Technologies for the Bioconversion
of Methane into More Valuable Products,” Curr. Opin. Biotechnol.,
50, 128-135(2018).
9. Kang, E., Moon, E., Song, W., Kim, L. H., Hyung, J. S., Jo, J.
H., Park, J. H., Kim, M. S., Na, J. G. and Choi, Y. S., “Chitosan/
Oleamide Nanofluid as a Significant Medium for Enhancing Gas
Utilization Efficiency in C1-Gas Microbial Biotransformation,”
Chem. Eng. J., 433(2022).
10. Akyol, S., Erdogan, S., Idiz, N., Celik, S., Kaya, M., Ucar, F.,
Dane, S. and Akyol, O., “The Role of Reactive Oxygen Species
and Oxidative Stress in Carbon Monoxide Toxicity: An In-Depth
Analysis,” Redox Rep., 19, 180-189(2014).
11. Garcia-Ochoa, F. and Gomez, E., “Bioreactor Scale-Up and Oxygen
Transfer Rate in Microbial Processes: An Overview,” Biotechnol.
Adv., 27, 153-176(2009).
12. Kim, D., Kang, E., Je, H. H., Kim, D. H., Whang, K., Cha, S.
H., Ye, D. Y., Baek, W., Kang, T., Hwang, D. S., Choi, Y. S. and
Jung, G. Y., “Molecular Regime Shift from Kinetic Limitation
Condition to Mass-Transfer Limitation Condition for Stabilizing
CO Metabolism by Microorganisms,” Chem. Eng. J., 504, 158801
(2025).
13. Yasin, M., Jang, N., Lee, M., Kang, H., Aslam, M., Bazmi, A.
A. and Chang, I. S., “Bioreactors, Gas Delivery Systems and
Supporting Technologies for Microbial Synthesis Gas Conversion
Process,” Bioresour. Technol. Rep., 7, 100207(2019).
14. Nienow, A. W., “Stirring and Stirred-Tank Reactors,” Chem-Ing-
Tech, 86, 2063-2074(2014).
15. Zhang, K., Yap, F. L., Li, K., Ng, C. T., Li, L. J. and Loh, K. P.,
“Large Scale Graphene/Hexagonal Boron Nitride Heterostructure
for Tunable Plasmonics,” Adv. Funct. Mater., 24, 731-738
(2014).
16. Yasin, M., Park, S., Jeong, Y., Lee, E. Y., Lee, J. and Chang, I.
S., “Effect of Internal Pressure and Gas/Liquid Interface Area on
the CO Mass Transfer Coefficient Using Hollow Fibre Membranes
as a High Mass Transfer Gas Diffusing System for Microbial
Syngas Fermentation,” Bioresour. Technol., 169, 637-643(2014).
17. Tanaka, S., Kastens, S., Fujioka, S., Schlüter, M. and Terasaka,
K., “Mass Transfer from Freely Rising Microbubbles in Aqueous
Solutions of Surfactant or Salt,” Chem. Eng. J., 387(2020).
18. Craig, V. S. J., “Do Hydration Forces Play a Role in Thin Film
Drainage and Rupture Observed in Electrolyte Solutions?,”
Curr. Opin. Colloid Interface Sci., 16, 597-600(2011).
19. Nekoeian, S., Aghajani, M., Alavi, S. M. and Sotoudeh, F., “Effect
of Surfactants on Mass Transfer Coefficients in Bubble Column
Contactors: An Interpretative Critical Review Study,” Rev. Chem.
Eng., 37, 585-617(2021).
20. Zhang, H., Wang, B., Xiong, M., Gao, C., Ren, H. and Ma, L.,
“Process Intensification in Gas-Liquid Mass Transfer by Nanofluids:
Mechanism and Current Status,” J. Mol. Liq., 346, 118268
(2022).
21. Kang, E., Je, H. H., Moon, E., Na, J. G., Kim, M. S., Hwang, D.
S. and Choi, Y. S., “Cellulose Nanocrystals Coated with a Tannic
Acid-Fe Complex as a Significant Medium for Efficient CH
Microbial Biotransformation,” Carbohydr. Polym., 258, 117733
(2021).
22. Van Hecke, W., Bockrath, R. and De Wever, H., “Effects of
Moderately Elevated Pressure on Gas Fermentation Processes,”
Bioresour. Technol., 293, 122129(2019).
23. Liu, L. Y., Xie, G. J., Xing, D. F., Liu, B. F., Ding, J. and Ren, N.
Q., “Biological Conversion of Methane to Polyhydroxyalkanoates:
Current Advances, Challenges, and Perspectives,” Environ. Sci.:
Ecotechnology, 2, 100029(2020).
24. Jaszczur, M. and Mlynarczykowska, A., “A General Review of
the Current Development of Mechanically Agitated Vessels,”
Processes, 8, 982(2020).
25. Bredwell, M. D., Srivastava, P. and Worden, R. M., “Reactor Design
Issues for Synthesis-Gas Fermentations,” Biotechnol. Prog., 15,
834-844(1999).
26. Puthli, M. S., Rathod, V. K. and Pandit, A. B., “Gas-Liquid Mass
Transfer Studies with Triple Impeller System on a Laboratory
Scale Bioreactor,” Biochem. Eng. J., 23, 25-30(2005).
27. Zhang, J. J., Gao, Z. M., Cai, Y. T., Cai, Z. Q., Yang, J. and Bao,
Y. Y., “Mass Transfer in Gas-Liquid Stirred Reactor with Various
Triple-Impeller Combinations,” Chin. J. Chem. Eng., 24, 703-710
(2016).
28. Ayol, A., Peixoto, L., Keskin, T. and Abubackar, H. N., “Reactor
Designs and Configurations for Biological and Bioelectrochemical
C1 Gas Conversion: A Review,” Int. J. Environ. Res. Public
Health, 18, 11683(2021).
29. Asimakopoulos, K., Gavala, H. N. and Skiadas, I. V., “Reactor
Systems for Syngas Fermentation Processes: A Review,” Chem.
Eng. J., 348, 732-744(2018).
30. Chen, J., Gomez, J. A., Hoffner, K., Barton, P. I. and Henson, M.
A., “Metabolic Modeling of Synthesis Gas Fermentation in Bubble
Column Reactors,” Biotechnol. Biofuels, 8, 89(2015).
31. Bello, R. A., Robinson, C. W. and Moo-Young, M., “Gas Holdup
and Overall Volumetric Oxygen Transfer Coefficient in Airlift
Contactors,” Biotechnol. Bioeng., 27, 369-381(1985).
32. Lee, J., Jang, N., Yasin, M., Lee, E. Y., Chang, I. S. and Kim, C.,
“Enhanced Mass Transfer Rate of Methane via Hollow Fiber
Membrane Modules for Methylosinus trichosporium OB3b Fermentation,”
J. Ind. Eng. Chem., 39, 149-152(2016).
33. Yasin, M., Park, S., Jeong, Y., Lee, E. Y., Lee, J. and Chang, I.
S., “Effect of Internal Pressure and Gas/Liquid Interface Area on
the CO Mass Transfer Coefficient Using Hollow Fibre Membranes
as a High Mass Transfer Gas Diffusing System for Microbial
Syngas Fermentation,” Bioresour. Technol., 169, 637-643(2014).
34. Orgill, J. J., Atiyeh, H. K., Devarapalli, M., Phillips, J. R., Lewis, R.
S. and Huhnke, R. L., “A Comparison of Mass Transfer Coefficients
Between Trickle-Bed, Hollow Fiber Membrane and Stirred Tank
Reactors,” Bioresour. Technol., 133, 340-346(2013).
35. Kumar, A., Dewulf, J. and Van Langenhove, H., “Membrane-Based
Biological Waste Gas Treatment,” Chem. Eng. J., 136, 82-91(2008).
36. Pichardo-Romero, D., Garcia-Arce, Z. P., Zavala-Ramírez, A. and
Castro-Muñoz, R., “Current Advances in Biofouling Mitigation
in Membranes for Water Treatment: An Overview,” Processes, 8,
182(2020).
37. di Biase, A., Kowalski, M. S., Devlin, T. R. and Oleszkiewicz, J.
A., “Moving Bed Biofilm Reactor Technology in Municipal
Wastewater Treatment: A Review,” J. Environ. Manag., 247, 849-
866(2019).
38. Shen, Y. W., Brown, R. and Wen, Z. Y., “Enhancing Mass Transfer
and Ethanol Production in Syngas Fermentation of Clostridium
carboxidivorans P7 Through a Monolithic Biofilm Reactor,”
Appl. Energy, 136, 68-76(2014).
39. Pang, C., Lee, J. W. and Kang, Y. T., “Review on Combined Heat
and Mass Transfer Characteristics in Nanofluids,” Int. J. Therm.
Sci., 87, 49-67(2015).
40. Takagi, S. and Matsumoto, Y., “Surfactant Effects on Bubble
Motion and Bubbly Flows,” Annu. Rev. Fluid Mech., 43, 615-636
(2011).
41. Shen, Y. W., Brown, R. C. and Wen, Z. Y., “Syngas Fermentation
by Clostridium carboxidivorans P7 in a Horizontal Rotating
Packed Bed Biofilm Reactor with Enhanced Ethanol Production,”
Appl. Energy, 187, 585-594(2017).
42. Gómez-Díaz, D., Navaza, J. and Sanjurjo, B., “Mass-Transfer
Enhancement or Reduction by Surfactant Presence at a Gas−Liquid
Interface,” Ind. Eng. Chem. Res., 48, 2671-2677(2009).
43. Hebrard, G., Zeng, J. and Loubiere, K., “Effect of Surfactants on
Liquid Side Mass Transfer Coefficients: A New Insight,” Chem.
Eng. J., 148, 132-138(2009).
44. Kluytmans, J. H. J., van Wachem, B. G. M., Kuster, B. F. M. and
Schouten, J. C., “Mass Transfer in Sparged and Stirred Reactors:
Influence of Carbon Particles and Electrolyte,” Chem. Eng. Sci.,
58, 4719-4728(2003).
45. Ho, D., Kim, K., Earmme, T. and Kim, C., “Enhancing Gas–Liquid
Volumetric Mass Transfer Coefficient,” J. Ind. Eng. Chem., 87,
1-17(2020).
46. Hajipour, M. J., Fromm, K. M., Ashkarran, A. A., de Aberasturi,
D. J., de Larramendi, I. R., Rojo, T., Serpooshan, V., Parak, W. J.
and Mahmoudi, M., “Antibacterial Properties of Nanoparticles,”
Trends Biotechnol., 30, 499-511(2012).
47. Müller, R. H., Gohla, S. and Keck, C. M., “State of the Art of
Nanocrystals – Special Features, Production, Nanotoxicology
Aspects and Intracellular Delivery,” Eur. J. Pharm. Biopharm.,
78, 1-9(2011).
48. Kim, W. G., Kang, H. U., Jung, K. M. and Kim, S. H., “Synthesis
of Silica Nanofluid and Application to CO Absorption,” Sep. Sci.
Technol., 43, 3036-3055(2008).
49. Kim, J. H., Jung, C. W. and Kang, Y. T., “Mass Transfer Enhancement
During CO Absorption Process in Methanol/Al O Nanofluids,”
Int. J. Heat Mass Transf., 76, 484-491(2014).
50. Olle, B., Bucak, S., Holmes, T. C., Bromberg, L., Hatton, T. A.
and Wang, D. I. C., “Enhancement of Oxygen Mass Transfer Using
Functionalized Magnetic Nanoparticles,” Ind. Eng. Chem. Res.,
45, 4355-4363(2006).
51. Modena, M. M., Ruhle, B., Burg, T. P. and Wuttke, S., “Nanoparticle
Characterization: What to Measure?,” Adv. Mater., 31, e1901556
(2019).
52. Jiang, J.-Z., Zhang, S., Fu, X.-L., Liu, L. and Sun, B.-M., “Review
of Gas–Liquid Mass Transfer Enhancement by Nanoparticles from
Macro to Microscopic,” Heat Mass Transf, 55, 2061-2072(2019).
53. Devendiran, D. K. and Amirtham, V. A., “A Review on Preparation,
Characterization, Properties and Applications of Nanofluids,”
Renew. Sustain. Energy Rev., 60, 21-40(2016).

