ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved


Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received September 6, 2023
Revised September 20, 2023
Accepted November 14, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

탄소섬유 토우의 전처리 효과와 비효소적 포도당 센싱 성능 평가

Evaluation of Pretreatment Effect and Non-enzymatic Glucose Sensing Performance of Carbon Fibers Tow Electrode

Seokyeong University
Korean Chemical Engineering Research, February 2024, 62(1), 13-18(6), 10.9713/kcer.2024.62.1.13 Epub 1 February 2024
downloadDownload PDF


웨어러블 디바이스용 유연 전극 소재 개발을 위해 탄소섬유 토우(carbon fibers tow)의 전처리에 따른 전기화학적 특

성을 조사하고, 이를 활용하여 포도당을 타겟으로 전기화학적 비효소 센서를 제작하였다. 탄소섬유 토우는 탈사이징

(desizing)과 활성화(activation) 공정을 통해 전처리 되었으며, 활성화는 화학적 산화와 전기화학적 산화의 두 가지 방

법으로 이루어졌다. 전처리된 샘플은 주사전자 현미경(SEM)을 이용하여 표면 분석되었으며, 전기화학적 특성 및 센싱

성능 분석은 시간대전류법와 순환전압 전류법, 전기화학 임피던스 분석법을 이용하여 수행되었다. 탄소섬유 토우는 전

처리를 통해 감소된 Ret와 ΔEp, 증가된 Ip 등 향상된 전기화학적 특성을 보였으며, 두 활성화 방법에서는 유사한 전기

화학적 특성이 얻어졌다. 본 연구에서는 전기화학센서 적용을 위해 전기화학적으로 활성화된 탄소섬유 토우를 최종 전

극 물질로 선정하였다. 이 전극을 기반으로 제작된 비효소적 포도당 검출 센서는 0.09899~3.754mM과 3.754~50 mM의

선형 구간에서 각각 0.744 mA/mM과 0.330 mA/mM 정도의 향상된 감도를 보였다. 본 연구를 통해 탄소섬유 토우의

전극 소재로서 사용 가능성을 확인했으며, 고성능 유연 전극 소재 개발에 기초 연구로 활용 가능할 것으로 기대된다.

To develop flexible electrode materials for wearable devices, we investigated the electrochemical characteristics of carbon fibers tow according to pretreatment. And an electrochemical non-enzymatic sensor was fabricated using glucose as a target. The carbon fibers tow was pretreated through desizing and activation processes, and activation was performed in two ways: chemical oxidation and electrochemical oxidation. Surface morphology of carbon fibers tow samples was observed by SEM and their electrochemical characteristics and sensing performance were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. Carbon fibers tow samples showed improved electrochemical properties such as reduced Ret, ΔEp, and increased Ip through pretreatment. And similar electrochemical properties were obtained with both activation methods. We selected electrochemically activated carbon fibers tow as the final electrode material for application of electrochemical sensor. The non-enzymatic glucose sensor based on this electrode has an enhanced sensitivity of 0.744 A/mM (in a linear range of 0.09899~3.75423 mM) and 0.330 mA/mM (3.75423~50 mM), respectively. Through this study, the possibility of using carbon fibers tow was confirmed as an electrode material. It is expected to be used as basic research for development of high-performance flexible electrode materials.


1. Sekar, M., Pandiaraj, M., Bhansali, S., Ponpandian, N. and Viswanathan,
C., “Carbon Fiber Based Electrochemical Sensor for Sweat
Cortisol Measurement,” Sci. Rep., 9, 403(2019).
2. Schröder, P., Aguiló-Aguayo, N., Auer, A., GrieBer, C., Kunze-
Liebhäuser, J., Ma, Y., Hummel, M., Obendorf, D. and Bechtold,
T., “Activation of Carbon Tow Electrodes for Use in Iron Aqueous
Redox Systems for Electrochemical Applications,” J. Mater.
Chem. C, 8, 7755-7764(2020).
3. Gao, L., Li, X., Li, X., Cheng, J., Wang, B., Wang, Z. and Li, C.,
“A Coaxial Yarn Electrode Based on Hierarchical MoS2 Nanosheets/
carbon Fiber Tows for Flexible Solid-state Supercapacitors,”
RSC Adv., 6, 57190-57198(2016).
4. Pezeshki, A, M., Clement, J. T., Veith, G. M., Zawodzinski, T. A.
and Mench, M. M., “High Performance Electrodes in Vanadium
Redox Flow Batteries Through Oxygen-enriched Thermal Activation,”
J. Power Sources, 294, 333-338(2015).
5. Maruyama, J., Maruyama, S., Fukuhara, T. and Hanafusa, K.,
“Efficient Edge Plane Exposure on Graphitic Carbon Fiber for
Enhanced Flow-battery Reactions,” J. Phys. Chem. C., 121, 24425-
6. Engstrom, R. C., “Electrochemical Pretreatment of Glassy Carbon
Electrode,” Anal. Chem., 54, 2310-2314(1982).
7. Dekanski, A., Stevanović, J., Stevanović, R., Nikolić, B. Ž. and
Jovanović, V., “Glassy Carbon Electrodes: I. Characterization
and Electrochemical Activation,” Carbon, 39, 1195-1205(2001).
8. Pumera, M., Sasaki, T. and Iwai, H., “Relationship Between Carbon
Nanotube Structure and Electrochemical Behavior: Heterogeneous
Electron Transfer at Electrochemically Activated Carbon
Nanotubes,” Chem. - Asian J., 3, 2046-2055(2008).
9. Yue, L., Li, W., Sun, F., Zhao, L. and Xing, L., “Highly Hydroxylated
Carbon Fibres as Electrode Materials of All-vanadium Redox
Flow Battery,” Carbon, 48, 3079-3090(2010).
10. Sun, B. and Kazacos, M. S., “Chemical Modification of Graphite
Electrode Materials for Vanadium Redox Flow Battery Application-
part II. Acid Treatments,” Electrochem. Acta, 37, 2459-2465
11. Peebles, L. H., “Carbon Fibers: Formation, Structure, and Properties,”
1st ed., CRC Press, Boca Raton(1995).
12. Li, W., Liu, J. and Yan, C., “Multi-walled Carbon Nanotubes
Used as An Electrode Reaction Catalyst for VO2
+/VO2+ for a
Vanadium Redox Flow Battery,” Carbon, 49, 3463-3470(2011).
13. Friedl, J., Bauer, C. M., Rinaldi, A. and Stimming, U., “Electron
Transfer Kinetics for the VO2
+/VO2+ Reaction on Multi-walled
Carbon Nanotubes,” Carbon, 63, 228-239(2013).
14. Ruan, C., Li, P., Xu, J., Chen, Y. and Xie, Y., “Activation of Carbon
Fiber for Enhancing Electrochemical Performance,” Inorg.
Chem. Front., 6, 3583-3597(2019).
15. Upadhyay, S., Rao, G. R., Sharma, M. K., Bhattacharya, B. K.,
Rao, V. K. and Vijayaraghavan, R., “Immobilization of Acetylcholinesterase-
choline Oxidase on a Gold-platinum Bimetallic
Nanoparticles Modified Glassy Carbon Electrode for the Sensitive
Detection of Organophosphate Pesticides, Carbamates and
Nerve Agents,” Biosens. Bioelectron., 25, 832-838(2009).
16. Torz-Piotrowska, R., Wrzyszczyński, A., Paprocki, K., Szreiber,
M., Uniszkiewicz, C. and Staryga, E., “The Application of CVD
Diamond Films in Cyclic Voltammetry,” J. Achiev. Mater. Manuf.
Eng., 37, 486-491(2009).
17. Wu, J. and Qu, Y., “Mediator-free Amperometric Determination
of Glucose Based on Direct Electron Transfer Between Glucose
Oxidase and An Oxidized Boron-doped Diamond Electrode,”
Anal. Bioanal. Chem., 385, 1330-1335(2006).
18. Misak, H. E., Asmatulu, R. A., O’Malley, M., Jurak, E. and Mall,
S., “Functionalization of Carbon Nanotube Yarn by Acid Treatment,”
Int. J. Smart Nano Mater., 5, 34-43(2014).
19. Felix, S., Chakkravarthy, B. P., Jeong, S. K. and Grace, A. N.,
“Synthesis of Pt Decorated Copper Oxide Nanoleaves and Its
Electrochemical Detection of Glucose,” J. Electrochem. Soc.,
162, H392-H396(2015).
20. Bard, A. J. and Faulkner, L. R., “Electrochemical Methods: Fundamentals
and Applications,” 2nd ed., John Wiley and Sons,
New York(1980).
21. Song, M. J., “Nonenzymatic Sensor Based on a Carbon Fiber
Electrode Modified with Boron-doped Diamond for Detection
of Glucose,” Korean Chem. Eng. Res., 57, 606-610(2019).
22. Song, M. J., “Investigation on Electrochemical Property of CNT
Fibers and Its Non-enzymatic Sensing Performance for Glucose
Detection,” Korean Chem. Eng. Res., 59, 606-610(2021).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail :

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로