ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved

Overall

Language
korean
Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received November 3, 2023
Revised November 20, 2023
Accepted November 21, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

SLA 3D 프린팅 방식 기반의 미세 유체 시스템 제작을 위한 소수성 표면 처리 연구

A Study on Hydrophobic Surface Treatment for Microfluidic System Fabrication Based on SLA 3D Printing Method

국립부경대학교
dj-im@pknu.ac.kr
Korean Chemical Engineering Research, February 2024, 62(1), 105-111(7), 10.9713/kcer.2024.62.1.105 Epub 1 February 2024
downloadDownload PDF

Abstract

SLA (Stereo Lithography Apparatus) 방식은 액체 상태의 광경화성 레진(Resin)이 자외선 레이저에 닿으면 고체가

되는 원리를 활용한 3D 프린팅 방식으로 다양한 분야에서의 활용도가 증가하고 있다. 본 연구에서는 이 SLA 3D 프

린팅 출력물의 표면 특성 중 소수성과 투명도를 개선하여 미세 유체 시스템의 제작에 활용하기 위한 기초 연구를 수

행하였다. SLA 출력물은 소수성 코팅 방법을 이용해 표면 소수성의 특성을 개선할 수 있었으나, 소수성 코팅 방법의

종류에 따라 다양한 환경에서의 코팅 유지력은 차이를 보였다. 또한, 미세 유체 시스템의 제작에 요구되는 충분한 투

명도와 소수성의 특성을 함께 확보하기 위해 선행된 연구에서 제안한 투명도 확보 방법에 소수성 코팅을 적용하여 접

촉각의 변화를 비교하였다. Teflon 코팅법이 이산화 티타늄 코팅법과 비교하여 우수한 투명도의 확보가 가능하며, 다

양한 환경에 노출되었을 때 높은 코팅의 유지력을 가져 미세 유체 시스템의 제작에 활용되기에 적합한 소수성 코팅법

으로 제안되었다. 마지막으로 본 연구를 통해 제안된 미세 유체 시스템의 제작에 적합한 소수성 코팅 방법인 Teflon 코

팅법 중 Fluoropel 800을 이용하여 디지털 미세 유체 시스템 중 하나인 액적 접촉 충전 현상(Electrophoresis of Charged

Droplet, ECD) 칩을 SLA 3D 프린팅으로 제작, 액적의 조작을 성공적으로 시연함으로써 SLA 3D 프린팅 기술의 미세

유체 시스템의 제작에 활용 가능성을 확인하였다.

The SLA (Stereolithography Apparatus) method is a type of 3D printing technique predicated on the transformation of liquid photocurable resin into a solid form through UV laser exposure, and its application is increasing in various fields. In this study, we conducted research to enhance the hydrophobicity and transparency of SLA 3D printing surfaces for microfluidic system production. The enhancement of surface hydrophobicity in SLA outputs was attainable through the application of hydrophobic coating methods, but the coating durability under different conditions varied depending on the type of hydrophobic coating. Additionally, to simultaneously achieve the required transparency and hydrophobic properties for the fabrication of microfluidic systems, we applied hydrophobic coatings to the proposed transparency enhancement method from prior research and compared the changes in contact angles. Teflon coating was proposed as a suitable hydrophobic coating method for the fabrication of microfluidic systems, given its excellent transparency and high coating durability in various environmental conditions, in comparison to titanium dioxide coating. Finally, we produced an Electrophoresis of Charged Droplet (ECD) chip, one of the digital microfluidics systems, using SLA 3D printing with the proposed Teflon coating method (Fluoropel 800). Droplet manipulation was successfully demonstrated with the fabricated chip, confirming the potential application of SLA 3D printing technology in the production of microfluidic systems.

References

1. Karakurt, I., and Lin, L., “3D Printing Technologies: Techniques,
Materials, and Post-processing,” Curr. Opin. Chem. Eng. 28,
134-143(2020).
2. Lee, J. Y., An, J. and Chua, C. K., “Fundamentals and Applications
of 3D Printing for Novel Materials,” Appl. Mater. Today., 7,
120-133(2017).
3. Shahrubudin, N., Lee, T. C. and Ramlan, R. J. P. M., “An Overview
on 3D Printing Technology : Technological, Materails, and
Applications,” Procedia. Manuf., 35, 1286-1296(2019).
4. Dhinakaran, V., Kumar, K. M., Ram, P. B., Ravichandran, M.
and Vinayagamoorthy, M., “A Review on Recent Advancements
In Fused Deposition Modeling,” Mater. Today: Proc., 27, 752-
756(2020).
5. Gaal, G., Mendes, M., de Almeida, T. P., Piazzetta, M. H., Gobbi,
Â. L., Riul Jr, A. and Rodrigues, V., “Simplified Fabrication of
Integrated Microfluidic Devices Using Fused Deposition Modeling
3D Printing,” Sens. Actuators B Chem., 242, 35-40(2017).
6. Shanmugam, V., Pavan, M. V., Babu, K. and Karnan, B., “Fused
Deposition Modeling Based Polymeric Materials and Their Performance:
A Review,” Polym. Compos., 42(11), 5656-5677(2021).
7. Huang, J., Qin, Q. and Wang, J., “A Review of Stereolithography:
Processes and Systems,” Processes, 8(9), 1138(2020).
8. Park, H. K., Shin, M., Kim, B., Park, J. W. and Lee, H., “A Visible
Light-curable Yet Visible Wavelength-transparent Resin for
Stereolithography 3D Printing,” NPG Asia Mater., 10(4), 82-89
(2018).
9. Bagheri, A. and Jin, J., “Photopolymerization in 3D Printing,”
Acs Appl. Polym. Mater., 1(4), 593-611(2019).
10. Bhattacharjee, N., Urrios, A., Kang, S. and Folch, A., “The Upcoming
3D-printing Revolution in Microfluidics,” Lab Chip, 16(10),
1720-1742(2016).
11. Nadagouda, M. N., Rastogi, V. and Ginn, M., “A Review on 3D
Printing Techniques for Medical Applications,” Curr. Opin. Chem.
Eng., 28, 152-157(2020).
12. Au, A. K., Huynh, W., Horowitz, L. F. and Folch, A., “3D-printed
Microfluidics,” Angew. Chem. Int. Ed., 55(12), 3862-3881(2016).
13. Tack, P., Victor, J., Gemmel, P. and Annemans, L., “3D-printing
Techniques in a Medical Setting: a Systematic Literature Review,”
Biomed. Eng. Online, 15, 1-21(2016).
14. Comina, G., Suska, A. and Filippini, D., “Low Cost Lab-on-achip
Prototyping with a Consumer Grade 3D Printer,” Lab Chip,
14(16), 2978-2982(2014).
15. Günther, D., Heymel, B., Franz Günther, J. and Ederer, I., “Continuous
3D-printing for Additive Manufacturing,” Rapid Prototyp.
J., 20(4), 320-327(2014).
16. Waheed, S., Cabot, J. M., Macdonald, N. P., Lewis, T., Guijt, R.
M., Paull, B. and Breadmore, M. C., “3D Printed Microfluidic
Devices: Enablers and Barriers,” Lab Chip, 16(11), 1993-2013
(2016).
17. Jafari, R., Cloutier, C., Allahdini, A. and Momen, G., “Recenct
Progress and Challenges with 3D Printing of Patterned Hydrophobic
and Superhydrophobic Surfaces,” Int. J. Adv. Manuf. Technol.
103, 1225-1238(2019).
18. Bae, S. J. and Im, D. J., “Comparison of Surface Characteristics
According to 3D Printing Methods and Materials for the Fabrication
of Microfluidic Systems,” Korean Chem. Eng. Res. 57(5),
706-713(2019).
19. Bae, S. J. and Im, D. J., “A Study on the Changes in Surface
Properties According to Post-treatment of SLA 3D Printing Materials,”
Korean Chem. Eng. Res., 60(1), 132-138(2022).
20. Barraze, B., Olate-Moya, F., Montecinos, G., Ortega, J. H., Rosenkranz,
A., Tamburrino, A. and Palza, H., “Superhydrophobic SLA
3D Printed Materials Modified with Nanoparticles Biomimicking
the Hierarchical Structure of a Rice Leaf,” Sci. Technol. Adv. Mater., 23(1), 300-321(2022).
21. Im, D. J., Noh, J., Moon, D. and Kang, I. S., “Electrophoresis of
a Charged Drople in a Dielectric Liquid for Droplet Actuation,”
Anal. Chem. 83(13), 5168-5174(2011).
22. Im, D. J., Yoo, B. S., Ahn, M. M., Moon, D. and Kang, I. S.,
“Digital Electrophoresis of Chared Droplets,” Anal. Chem. 85(8),
4038-4044(2013).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail : kiche@kiche.or.kr

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로