ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved


Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received July 21, 2023
Revised October 11, 2023
Accepted October 11, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

아민 차수에 따른 고체 흡수제의 이산화탄소 분리 특성

Characteristics of Carbon Dioxide Separation for Solid Absorbents According to Amine Order

Hanseo University
Korean Chemical Engineering Research, November 2023, 61(4), 619-626(8), 10.9713/kcer.2023.61.4.619 Epub 1 November 2023
downloadDownload PDF


건식 이산화탄소 분리공정에서 아민 구조체의 운전 특성을 규명하기 위하여 1차 아민과 2차 아민 구조체를 합성하

였다. TSA 조건에서 1차 아민과 2차 아민 건식 포집 분리제의 분리 특성을 연구하였다. (3-Aminopropyl) triethoxysilane을

1차 아민 전구체로 가교제로 이용하여 가교 결합된 2차 아민 전구체를 합성하였다. 합성된 2차 아민 전구체를 Tetraethyl

orthosilicate를 구조배양제로 사용하여 2차 아민 고체상 이산화탄소 분리제를 합성하였다. 1차 및 2차 아민 구조체의

TSA 공정조건에서 이산화탄소 분리 특성을 비교하였다. 1차 아민에 흡수된 이산화탄소 분리는 170℃ 이상에서 완전

히 이루어지나 이산화탄소에 의하여 아민이 우레아로 전환되며, 아민기 손실이 발생되었다. 아민 손실이 낮은 130℃ 재

생시 1차 아민 분리제의 공정 운전성능(working capacity)은 본 구조체의 경우 2% 이하로 나타났다. 2차 아민이 낮은

재생온도에서 높은 이산화탄소 분리능을 나타내었다. 이산화탄소 2% 흡수 분위기와 100% 재생분위기에서 약 6.5%의

공정 운전 성능을 예측할 수 있었다.

Primary and secondary amine-based sorbents were synthesized to investigate the operation capacity for the

carbon dioxide separation TSA process. (3-Aminopropyl) triethoxysilane was used as a primary amine precursor as a

crosslinking agent to synthesize a secondary amine precursor in which amine groups were crosslinked with a

crosslinking agent. Carbon dioxide absorbed by primary amines is completely separated above 170 °C. The working

capacity of the primary amine absorbent was less than 2% when regenerated at 130°C. The secondary amine absorbent

has a higher carbon dioxide separation capacity at a lower regeneration temperature than the primary amine absorbent.

The secondary amine absorbent could predict process operation performance of about 6.5% with 2% carbon dioxide

absorption and 100% carbon dioxide regeneration conditions. Therefore, it was found that the working capacity of the

secondary amine absorbent was higher than that of the primary amine.


1. Korea 2050 Carbon Neutral Strategy (2020) https://www.2050cnc.
2. Lee, S. H., Lee, M. G., Jeon, W., Son, M. S. and Jung, S. P.,
“Current Status and Perspectives of Carbon Capture and Storage,”
J. Korean Soc. Environ. Eng., 44(12), 652-664(2022).
3. Kim, H. M. and Nah, I. W., “Brief Review on Carbon Dioxide
Capture and Utilization Technology,” Korean Chem. Eng. Res.,
57(5), 589-595(2019).
4. Dubey, A. and Akhilesh, A., “Advancements in Carbon Capture
Technologies: A Review,” Journal of Cleaner Production, 373(1),
5. Khosroabadi, F., Aslani, A., Bekhrad, K. and Zolfaghari, Z.,
“Analysis of Carbon Dioxide Capturing Technologies and their
technology developments,” Cleaner Engineering and Technology,
5, 100279(2021).
6. Heo, Y. J., Lee, J. H., Lee, J. W. and Park, S. J., “Recent Research
and Developments of Solid Adsorbents for CO2 Capture in Postcombustion,”
KIC News, 21(4), 13-23(2018).
7. Choi, Y. J., Youn, M. H., Park, K. T., Kim, I. H. and Jeong, S.
K., “Enhancement of Carbon Dioxide Absorption Rate with
Metal Nano Particles,” J. of the Korea Aca.-Ind. Coop. Soc.,
16(10), 6439-6444(2015).
8. Baek, G. H., You, S. H. and Cha, W. S., “Carbon Dioxide Absorption
Property of Physical Sorbent in the Pre-Combustion Condition,”
J. of the Korea Aca.-Ind. Coop. Soc., 11(11), 4643-4648(2010).
9. Quang, D. V., Dindi, A., Rayer, A. V., Hadri, N. E., Abdulkadir,
A. and Abu-Zahra, M. R. M., “Impregnation of Amines Onto Porous
Precipitated Silica for CO2 Capture,” Energy Procedia, 63, 2122-
10. Yamada, H., Dao, D. S., Chowdhury, F. A., Fujiki, J., Goto, K.
and Yogo, K., “Development of Amine-impregnated Solid Sorbents
for CO2 Capture,” Energy Procedia, 63, 2346-2350(2014).
11. Jang, H. T. and Cha, W. S., “Development of Porous Heterocyclic
Polymer Solid Sorbent for Carbon Dioxide Separation,” Ministry
of Future Creation and Science, Korea (2014).
12. Sumer, Z. and Keskin, S., “Ranking of MOF Adsorbents for CO2
Separations: A Molecular Simulation Study,” Ind. Eng. Chem.
Res. 55, 10404-10419(2016).
13. Erucar, I. and Keskin, S., “High-Throughput Molecular Simulations
of MOFs for CO2 Separation : Opportunities and Challenges,”
Front. Mater., 5, 1-6(2018).
14. Qiao, Z., Zhang, K. and Jiang, J., “In Silico Screening of 4764
Computation-Ready, Experimental Metal–Organic Frameworks
for CO2 Separation,” J. Mater. Chem. A, 4, 2105-2114(2016).
15. Wu, D., Yang, Q. Y., Zhong, C. L., Liu, D. H., Huang, H. L.,
Zhang, W. J. and Maurin, G., “Revealing the Structure-Property
Relationships of Metal-Organic Frameworks for CO2 Capture
from Flue Gas,” Langmuir, 28, 12094-12099(2012).
16. Altintas, C., Avci G., Daglar, H., Azar, A. N. V. Velioglu, S., Erucar,
I. and Keskin, S., “Database for CO2 Separation Performances
of MOFs Based on Computational Materials Screening,” Appl.
Mater. Interfaces, 10, 17257-17268(2018).
17. Vinodh, R., Babu, C. M., Abidov A., Palanichamy, M. and Jang,
H. T., “Facile Synthesis of Amine Modified Silica/reduced Graphene
Oxide Composite Sorbent for CO2 Adsorption,” Materials Letters,
247(15), 44-47(2019).
18. Vinodh, R., Abidov A., Palanichamy, M., Cha, W. S. and Jang,
H. T., “Constrained Growth of Solid Amino Alkyl Siloxane (an
organic–inorganic hybrid): The Ultimate Selective Sorbent for
CO2,” J. of Ind. Eng. Chem., 65(25) 156-166(2018).
19. Gholidoust, A., Atkinson, J. D. and Hashisho, Z., “Enhancing
CO2 Adsorption via Amine-Impregnated Activated Carbon from
Oil Sands Coke,” Energy Fuels, 31(2), 1756-1763(2017).
20. Das, D. and Meikap, B. C., “Role of Amine-impregnated Activated
Carbon in Carbon Dioxide Capture,” Indian Chemical
Engineer, 63(4), 435-447(2021).
21. Sanz-Pérez, E. S., Arencibia, A., Sanz, R. and Calleja, G., “New
Developments on Carbon Dioxide Capture Using Amine-impregnated
Silicas,” Adsorption, 22, 609-619(2016).
22. Anyanwu, J. T., Wang, Y. and Yang, R. T., “Amine-Grafted Silica
Gels for CO2 Capture Including Direct Air Capture,” Ind. Eng.
Chem. Res., 59(15), 7072-7079(2020).
23. Jang, D. I. and Park, S. J., “Influence of Amine Grafting on Carbon
Dioxide Adsorption Behaviors of Activated Carbons,” Bull.
Korean Chem. Soc., 32(9), 3377-3381(2011).
24. Cha, W. S., Lim, B. J., Kim, J. S., Lee, S. Y., Park, T. J. and Jang,
H. T., “Characteristics of Carbon Dioxide Separation Using Amine
Functionalized Carbon,” J. of the Korea Aca.-Ind. Coop. Soc.,
22(4), 17-24(2021).
25. Min, K. M., Choi, W. S., Kim, C. H. and Choi, M. K., “Oxidation-
stable Amine-containing Adsorbents for Carbon Dioxide
Capture,” Nature Communications, 9, 726(2018).
26. Choi, W. S., Min, K. M., Kim, C. H., Ko, Y. S., Jeon, J. W., Seo,
H. M., Park, Y. K. and Choi, M. K., “Epoxide-functionalization
of Polyethyleneimine for Synthesis of Stable Carbon Dioxide
Adsorbent in Temperature Swing Adsorption,” Nature Communications,
7, 12640(2016).
27. Choi, S. H., You, J. K., Park, K. T., Baek, I. H. and Park, S. J.,
“Carbon Dioxide Absorption Characteristics According to Amine
Mixtures With Different Order,” J. of the Korea Aca.-Ind. Coop.
Soc., 14(9), 4635-4642(2013).
28. Wu, H., Thibault, C. G., Wang, H., Cychosz, K. A., Thommes,
M. and Li, J., “Effect of Temperature on Hydrogen and Carbon
Dioxide Adsorption Hysteresis in An Ultramicroporous MOF,”
Microporous Mesoporous Mater., 219(1), 186-189(2016).
29. Mulfort, K. L., Farha, O. K., Malliakas, C. D., Kanatzidis, M. G.
and Hupp, J. T., “An Interpenetrated Framework Material with
Hysteretic CO2 Uptake,” Chem. A Eur. J., 16, 276-281(2010).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail :

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로