ISSN: 0304-128X ISSN: 2233-9558
Copyright © 2024 KICHE. All rights reserved


Conflict of Interest
In relation to this article, we declare that there is no conflict of interest.
Publication history
Received May 22, 2023
Revised September 11, 2023
Accepted September 13, 2023
articles This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright © KIChE. All rights reserved.

Most Cited

고분자연료전지의 화학적/기계적 내구성 평가 시간 단축

Reducing the Test Time for Chemical/Mechanical Durability of Polymer Electrolyte Membrane Fuel Cells

순천대학교 1친환경기술연구소
Sunchon National University 1KATECH
Korean Chemical Engineering Research, November 2023, 61(4), 517-522(6), 10.9713/kcer.2023.61.4.517 Epub 1 November 2023
downloadDownload PDF


고분자전해질 연료전지 (PEMFC)에 공기와 수소를 공급하고 개회로전압 (OCV) 상태에서 가습/건조를 반복하는 고

분자막의 화학적/기계적 내구성 평가법이 사용되고 있다. 이 프로토콜에서 가습/건조가 반복되면 전압 상승/감소가 반

복되어 전극 열화도 발생한다. 막 내구성이 우수한 경우 전압 변화 횟수가 증가해, 전극 열화에 의해 평가가 종료되어

원래 목적인 막 내구성 평가를 할 수 없는 문제가 발생하기도 한다. 본 연구에서는 미국 에너지부 (DOE)와 동일한 프

로토콜을 사용하되 cathode 가스로 공기대신 산소를 사용하고 가습/건조시간과 유량도 증가시켜 막의 화학적/기계적

열화 속도를 증가시켜서 고분자막 내구 평가 시간을 단축시킴으로서 이와 같은 문제를 개선하고자 하였다. Nafion 211

막전극접합체(MEA) 내구성 평가를 공기 대신 산소를 사용해서 가속화도를 2.6배 증가시켜 2,300 사이클만에 평가 종

료하였다. 본 프로토콜에 의해 고분자막도 가속 열화되고, 전극 촉매도 가속 열화되어 고분자막과 전극의 내구성을 동

시에 평가할 수 있는 이점도 있었다.

A chemical/mechanical durability test of polymer membrane evaluation method is used in which air and

hydrogen are supplied to the proton exchange membrane fuel cell (PEMFC) and wet/dry is repeated in the open

circuit voltage (OCV) state. In this protocol, when wet/dry is repeated, voltage increase/decrease is repeated, resulting

in electrode degradation. When the membrane durability is excellent, the number of voltage changes increases and

the evaluation is terminated due to electrode degradation, which may cause a problem that the original purpose of

membrane durability evaluation cannot be performed. In this study, the same protocol as the department of energy

(DOE) was used, but oxygen was used instead of air as the cathode gas, and the wet/dry time and flow rate were also

increased to increase the chemical/mechanical degradation rate of the membrane, thereby shortening the durability

evaluation time of the membrane to improve these problems. The durability test of the Nafion 211 membrane

electrode assembly (MEA) was completed after 2,300 cycles by increasing the acceleration by 2.6 times using

oxygen instead of air. This protocol also accelerated degradation of the membrane and accelerated degradation of the

electrode catalyst, which also had the advantage of simultaneously evaluating the durability of the membrane and the



1. Gittleman, C. S., Kongkanand, A., Masten, D., and Gu, W.,
“Materials Research and Development Focus Areas for Low
Cost Automotive Proton-exchange Membrane Fuel Cells,” Curr.
Opin. Electrochem., 18, 81(2019).
2. Borup, R. L., Kusoglu, A., Neyerlin, K. C., Mukundan, R.,
Ahluwalia, R. K., Cullen, D. A., More, K. L., Weber, A. Z. and
Myers, D. J., “Recent Developments in Catalyst-related PEM
Fuel Cell Durability,” Curr. Opin. Electrochem., 21, 192(2020).
3. Marcinkoski, J., Vijayagopal, R., Adams, J., James, B., Kopasz,
J., and Ahluwalia, R.,Hydrogen Class 8 Long Haul Truck Targets.
Subsection of the Electrified Powertrain Roadmap. Technical Targets
for Hydrogen-Fueled Long-Haul Tractor-Trailer Trucks. https:// long_haul_
4. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S.
“Surface Area Loss of Supported Platinum in Polymer Electrolyte
Fuel Cells,” J. Electrochem. Soc., 140(10), 2872-2877(1993).
5. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D.
P., “Aging Mechanism and Lifetime of PEFC and DMFC,” J.
Power Sources, 127(1-2), 127-134(2004).
6. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., “Degradation
Behavior of Membrane-electrode-assembly Materials in 10-cell
PEMFC Stack,” Int. J. Hydrogen Energy, 31(13), 1838-1854(2006).
7. Pozio, A., Silva, R. F., Francesco, M. D. and Giorgi, L., “Nafion
Degradation in PEFCs from End Plate Iron Contamination,”
Electrochim. Acta, 48(11), 1543-1548(2003).
8. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov,
P. and Borup, R. L., “Durability of PEFCs at High Humidity
Conditions,” J. Electrochem. Soc., 152(1), A104-A113(2005).
9. Curtin, D. E., Lousenberg, R. D., Henry, T. J., Tangeman, P. C.
and Tisack, M. E., “Advanced Materials of Improved PEMFC
Performance and Life,” J. Power Sources, 131(1-2), 41-48(2004).
10. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger.
A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology
and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester,
England, 611-612(2003).
11. Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P.,
“Degradation of Polymer Electrolyte Membranes,” Int. J. Hydrogen
Energy, 31(13), 1838-1854(2006).
component_durability_profile.pdf, “DOE Cell Component Accelerated
Stress Test Protocols For Pem Fuel Cells.”
13. Daido University, Ritsumeikian Univ., Tokyo Institute of Technology,
Japan Automobile Research Ins., “Cell Evaluation and
Analy-sis Protocol Guidline,” NEDO, Development of PEFC
Technologies for Commercial Promotion-PEFC Evaluation Project,
January 30(2014).
14. Mukundan, R., “Fuel Cell – Performance and Durability FC139
– Modeling, Evaluation, Characterization,” 2016 DOE Fuel Cell
Technologies Office Annual Merit Review, June 8th(2016).
15. Mukundan, R., Baker, A. M., Kusoglu, A., Beattie, P., Knights,
S., Weber, A. S. and Borup, R. L., “Membrane Accelerated Stress
Test Development for Polymer Electrolyte Fuel Cell Durability
Validated Using Field and Drive Cycle Testing,” J. Electrochem.
Soc., 165(6), F3085-F3093(2018).
16. Lim, D. H., Oh, S. H., Jung, S. G., Jeong, J. H. and Park, K. P.,
“Durability Test of PEMFC Membrane by the Combination of
Chemical/Mechanical degradation,” Korean Chem. Eng. Res., 59(1),
17. Mench, M. M., Emin, C. K. and Veziroglu, T. N., Polymer Electrolyte
Fuel Cell Degradation, Academic Press, Oxford, Waltham,
MA, 64-77(2012).
18. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T.
W. and Park, K. P., “Pinhole Formation in PEMFC Membrane
After Electrochemical Degradation and Wet/dry Cycling Test,”
Korean J. Chem. Eng., 28(2), 487-491(2011).

The Korean Institute of Chemical Engineers. F5, 119, Anam-ro, Seongbuk-gu, 233 Spring Street Seoul 02856, South Korea.
Phone No. +82-2-458-3078FAX No. +82-507-804-0669E-mail :

Copyright (C) KICHE.all rights reserved.

- Korean Chemical Engineering Research 상단으로